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flexibility. Finally, I would like to thank the members of the Econometrics Reading Group

for their insightful input on parts of this work.



www.manaraa.com

vii

ABSTRACT

This dissertation consists of three chapters on program evaluation, or the estimation of

treatment effects.

The first chapter discusses bootstrap methods for inference on matching estimators,

a popular approach to program evaluation. Abadie and Imbens (2008) showed that the

standard non-parametric bootstrap fails to provide valid inference with matching estimators,

and conjectured that a wild bootstrap could solve the problem. Otsu and Rai (2017)

confirmed this conjecture, providing a wild bootstrap procedure that is valid in general.

Their bootstrap builds in a bias correction procedure that requires estimation of conditional

mean functions, a procedure that is generally necessary for consistent matching estimation.

However, this step also introduces a new source of estimation error, lessening the efficiency

of the bootstrap. I show that even in a special case, when bias correction in the estimator

is unnecessary, the conditional mean function estimation is a required element of any wild

bootstrap for the matching estimator. This shows that the Otsu and Rai bootstrap cannot

be modified to be more efficient even by leveraging much stronger assumptions. Simulations

provide additional support for this conclusion.

The second chapter also deals with matching estimators. I consider the problem faced

by a practitioner who wishes to use matching estimation to estimate a treatment effect - in

particular, choosing from a large set of available matching procedures. I cast matching esti-

mators as two-step procedures - a weight-generation step followed by a weighted difference

in means - and derive weights that minimize mean-squared error (MSE) under certain con-

ditions. Understanding why the optimal weights behave the way they do generates insights

about which matching procedures are likely to minimize MSE, enabling practitioners to use

their economic intuition, knowledge of the empirical context, and knowledge of the sam-
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pling process to choose an appropriate matching procedure. I develop a simple ‘augmented’

matching procedure to illustrate, and through simulation confirm that the guidance I offer

is correct.

In the final chapter, I apply my program evaluation expertise to a question in the

economics of education - specifically, the effect of teacher gender on student test scores.

Previous literature in this vein has focused on the estimation of average effects. By exploit-

ing random assignment of students to teachers in a field experiment, I study heterogeneity

in the impact of teacher gender on math and reading test outcomes for primary school stu-

dents of differing ability. I find that assignment to a female teacher is generally positive for

male students, while it has no significant effect for female students. In addition, I find very

little heterogeneity in the effect of teacher gender along the ability axis, suggesting that

average effect estimates from previous investigations do not mask significant heterogeneity.

My results are consistent with differential teacher behavior based on gender stereotypes,

and somewhat inconsistent with differential student behavior based on gender stereotypes.
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CHAPTER 1. A NOTE ON BOOTSTRAPS FOR MATCHING

ESTIMATION

Matching estimators are a popular approach to program evaluation. Abadie and Im-

bens (2008) showed that the naive bootstrap fails to provide valid inference with matching

estimators, and conjectured that a wild bootstrap could solve the problem. Otsu and Rai

(2017) confirm this conjecture. I show that even with much stronger assumptions, the Otsu

and Rai (2017) bootstrap cannot be modified to be more efficient.

1.1 Introduction

Evaluating the efficacy of programs or treatments requires the estimation of treatment

effects. A popular nonparametric method for estimating average treatment effects is the

method of matching, which has significant intuitive appeal. These methods match treated

units to control units that are ‘close’ as measured by a chosen metric. The estimated average

treatment effect is then constructed by averaging the differences between matched units.

Matching can be done with or without replacement, but the latter is more common.

Abadie and Imbens (2006) began a comprehensive study of matching estimators, continued

in a series of papers (Abadie and Imbens, 2008, 2011, 2009, 2016). Abadie and Imbens

(2006) found that matching on covariates is not always
√
N -consistent, generally requiring

a bias correction. Abadie and Imbens (2008) showed that even when the matching estimator

is
√
N -consistent, the ‘naive’ bootstrap1 fails to correctly estimate the distribution of the

matching estimator.

1Resampling observations with replacement to create a bootstrapped sample.
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Abadie and Imbens (2008) traced the failure of the naive bootstrap to a failure to

capture the behavior of the matching process that underlies the estimator. Specifically, a

given control observation will tend not to be matched to the same treated units, or even

the same number of treated units, across the true and bootstrapped samples. Abadie and

Imbens (2008) noted that this reasoning clearly suggests a wild bootstrap could avoid the

problem, by conditioning the bootstrap on realized matches in the true sample. Otsu and

Rai (2017) confirm this conjecture, providing a consistent bootstrap procedure for matching

estimators that match on covariates.

Because Otsu and Rai (2017) developed a bootstrap that is valid in general, it naturally

incorporates the bias correction that is sometimes required for consistency of the matching

estimator. This entails the estimation of conditional mean functions for units in both

treatment arms, which introduces an additional source of estimation error. It is reasonable

to suspect that eliminating this estimation error might generate efficiency gains in the

bootstrap, at the cost of generality.

In this chapter, I show that conditional mean estimation is necessary for a valid wild

bootstrap even without bias correction. Considering a special case where matching estima-

tion is consistent without bias correction, I develop a natural wild bootstrap and show that

it fails to consistently estimate the variance of the matching estimator. Potential solutions

to the problem fall into two categories: those that essentially reproduce the bootstrap from

Otsu and Rai (2017), and those that abandon the wild bootstrap entirely.

The remainder of the chapter is organized as follows. In Section 1.2, I introduce notation

and give a formal explanation of matching estimators. In Section 1.3, I propose a wild

bootstrap without bias correction, and show theoretically that it fails in general. In Section

1.4, I provide simulation evidence of the failure. Finally, in Section 1.5 I conclude by

providing an intuition for the failure and some potential avenues for future research.
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1.2 Setup and Notation

Suppose we observe a random sample of sizeN = N1+N0, which consists ofN1 units that

received treatment and N0 units that did not receive treatment. For each unit i = 1, ..., N ,

we observe a triplet consisting of a treatment indicator Di ∈ {0, 1}, a covariate Xi, and the

outcome variable Yi = DiYi(1) + (1−Di)Yi(0). Yi(1) and Yi(0) are the potential outcomes

for unit i when Di = 1 and Di = 0, respectively.

In general, Xi can be a vector of multiple covariates. In this chapter, I restrict my

attention to the case where Xi is scalar, as this is a simple way to eliminate the need for

bias correction. While it is possible for Xi to be a vector of multiple covariates and for bias

correction to be unnecessary, it has no impact on my conclusions whether Xi is a scalar or

vector.

Given this sample, we seek to conduct inference on the average treatment effect for the

treated population2 (the ATT),

τ t = E [Yi(1)− Yi(0) | Di = 1] (1.1)

To estimate τ t, we use an M nearest-neighbor matching estimator of the type studied

in Abadie and Imbens (2006). Matching is based on covariate distance. Formally, the

estimator is described as follows:

τ̂ t =
1

N1

∑
i:Di=1

(
Yi(1)− Ŷi(0)

)
(1.2)

where Ŷi(0) is an estimate of the unobserved potential outcome, defined as

Ŷi(0) =


Yi, if Di = 0,

1
M

∑
j∈JM (i) Yj , if Di = 1

(1.3)

2The restriction to the ATT is without loss of generality. The extension to the case of the average
treatment effect for the untreated population (the ATC) is straightforward, and extending the result to the
case of the average treatment effect for the whole population (the ATE) follows from the representation of
the ATE as a weighted average of the ATT and the ATC.
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JM (i) is the set of indices describing the M closest matches to unit i. Formally, it is

defined as

JM (i) =

j ∈ {1, ..., N} : Dj = 0,
∑
l:Dl=0

I {| Xl −Xi |≤| Xj −Xi |} ≤M

 (1.4)

As an example, suppose that for some treated unit i, Xi = 4. Suppose there are three

control units j, k, l, with Xj = 3.5, Xk = 4.6, Xl = 5. J1(i) is the closest match, and would

thus be the singleton set {j}. J2(i) would be {j, k}, and J3(i) would be {j, k, l}. For the

remainder of the chapter, I generally restrict attention to the case where M = 1 - a common

choice in practice, and one which eases exposition considerably.

It is useful to define Ki as the number of times unit i is used as a match

Ki =


0, if Di = 1,∑

j:Dj=1 I{i ∈ JM (i)}, if Di = 0

(1.5)

Let m(i) be a function that returns the single value in JM (i) when M = 1. Finally, let

µ(d, x) = E [Y | D = d,X = x] and σ2(d, x) = Var (Y | D = d,X = x).

Abadie and Imbens (2006), in their study of matching estimators of this kind, considered

the case where N grows while M remains constant. Otsu and Rai (2017) refer to this as

‘fixed-M asymptotics’. Under the following assumptions, Abadie and Imbens were able to

characterize the asymptotic behavior of τ̂ t.

AI.1 Conditional on Di = d, the sample consists of independent draws from Y,X | D = d

for d ∈ {0, 1}. For some r ≤ 1, N r
1/N0 → θ ∈ (0,∞).

AI.2 X is continuously distributed on compact and convex support X ⊂ R. The density of

X is bounded and bounded away from zero on X.

AI.3 D is independent of Y (0) conditional on X = x for almost every x. There exists a

positive constant c such that Pr [D = 1 | X = x] ≤ 1− c for almost every x.

AI.4 For d ∈ {0, 1}, µ(d, x) and σ2(d, x) are Lipschitz in X, and σ2(d, x) is bounded away

from zero on X.
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Assumptions AI.1 through AI.3 are relatively standard. They provide useful conditions

on the sampling process and the distribution of X, along with the standard unconfound-

edness and overlap assumptions necessary to identify the ATT. AI.4 provides smoothness

and bounds that are necessary for the characterization of the bias term and its asymptotic

behavior.

Under these assumptions, Abadie and Imbens (2006) showed that τ̂ t →p τ t, and

√
N1

(
τ̂ t −Bt

N − τ t
)

σtN
→d N (0, 1) (1.6)

where

Bt
N =

N∑
i=1

Di

 1

M

∑
j∈JM (i)

[µ(0, Xi)− µ(0, Xj)]


(σtN )2 = (σt1N )2 + (σt2)

2

σt1N =
1

N1

N∑
i=1

(
Di + (1−Di)

1

M
Ki

)2

σ2(Di, Xi)

(σ22)2 = E
[
(µ(1, Xi)− µ(0, Xi)− τ t)2 | Di = 1

]
(1.7)

Inuitively, Bt
N captures the bias produced by matches that are less than perfect. Since se-

lection on observables is contained in assumptions AI.1 through AI.4, if Xj = Xi, µ(0, Xi)−

µ(0, Xj) = 0 follows trivially. σt1N captures the variance effect of units being matched poten-

tially multiple times3. Finally, (σt2)
2 captures the variance produced by innate differences

in the treatment effect conditional on X. If τ t did not depend on X, for instance, (σt2)
2

would trivially be zero.

When Xi is scalar, Bt
N is op(N

−1/2
1 ) and thus asymptotically ignorable. Alternatively, I

could directly restrict attention to cases where Bt
N is op(N

−1/2
1 ), which occurs when r > k/2,

effectively placing a strong restriction on the growth rate of the different treatment arms in

the sampling process. Intuitively, Bt
N is ignorable when N0 grows at least as fast as

√
N1.

It is more common for control groups to be at least as large as treatment groups, so for

3Note that if Ki = 1 for all i, σt
1N devoles into the average of σ2(Di, Xi) over the sample.
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the purposes of estimating the ATT this requirement is often satisfied, further supporting

an exploration for a special case of the bootstrap without bias correction. When Bt
N is not

ignorable, the bias term grows because the number of matches required grows faster than

the ‘quality’4 of matches shrinks, resulting in the average ‘quality’ of matches decreasing as

N increases.

1.3 Proposed Bootstrap

Otsu and Rai (2017) provide a valid wild bootstrap for the general case of the M -nearest

neighbor matching estimator described above, for any number of continuous covariates. In

their setting, Bt
N is not guaranteed to be op(N

−1/2
1 ). Thus, as a bias correction is needed in

the estimation procedure, part of the bootstrap must also account for the variance generated

by the bias correction. Otsu and Rai solve this problem by simply bootstrapping the bias

correction itself, which requires estimating of the conditional mean functions µ(d, x) for

d ∈ {0, 1}. It is reasonable to suspect that estimation errors in this step may increase the

estimated variance of τ̂ t, and thus that a bootstrap without the bias correction might be

more efficient, at the cost of being invalid when a bias correction is needed.

The reason a wild bootstrap was conjectured by Abadie and Imbens (2008) is that by

definition, a wild bootstrap will not change the matches and thus will not need to estimate

the distribution of Ki. I consider the following procedure:

1. Estimate τ̂ t using nearest-neighbor matching.

2. Using τ̂ t from step 1, generate residuals ξ̂i =
(
Yi(1)− τ̂ t

)
− Ŷi(0) .

3. Draw a bootstrap auxiliary variable ε∗i from the Rademacher distribution.

4. Create bootstrapped treated outcomes Yi(1)∗ = Ŷi(0) + τ̂ t + ε∗i ξ̂i.

5. Estimate τ̂ t∗ using nearest-neighbor matching on the bootstrapped sample.

4The ‘quality’ of a match can be thought of as the difference between µ(Xi, 0) and µ(Xj , 0) for i and j
being matched together.
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6. Repeat steps 1-5 B times, and use the sample variance of τ̂ t∗ to estimate the variance

of τ̂ t.

Davidson et al. (2007) provides strong evidence that the Rademacher distribution is

superior for wild bootstrap performance. Indeed, their results suggest that the Rademacher

distribution is one of the best distributions possible. The Rademacher distribution is very

simple, with ε∗i taking the values 1 and −1 with equal probability.

This is a prima facie reasonable procedure. While it may appear odd at first for the

bootstrapped dataset to consist of (Y (1)∗, Y (0)), this is a result of estimating the ATT.

Bootstrapping Y (0) would require defining and constructing estimates of Ŷi(1), which can-

not be done without estimating the average treatment effect for the whole population, or

estimating conditional mean functions as in Otsu and Rai (2017). As τ t is often an object

of interest in itself, a wild bootstrap for this case is worth having.

Unfortunately, the proposed bootstrap is not valid in general. Furthermore, the failure

indicates that any wild bootstrap that does not construct Ŷi(1) will not be valid in general.

The failure is not total - in certain special cases5, the procedure works correctly. The

special cases offer an intuition for why the procedure fails in general. Solving this problem

essentially requires replicating the Otsu and Rai (2017) bootstrap procedure by estimating

conditional mean functions to construct Ŷi(1), or abandoning the wild bootstrap altogether.

The simplest option in the latter category is to bootstrap the treatment indicator Di

rather than Yi. As this approach relies on estimating propensity scores, which is done for all

observations even when estimating the ATT, it avoids the incomplete bootstrapping issue.

This approach is illustrated in Huber et al. (2016) and Adusumilli (2017).

For the proposed bootstrap to work, it would suffice for the following to be true,

sup
q

∣∣∣Pr
{√

N1

(
τ̂ t∗ − τ̂ t

)
≤ q | Z

}
− Pr

{√
N1

(
τ̂ t − τ t

)
≤ q
}∣∣∣→p 0 (1.8)

5Most notably, in the case where each treated unit has a unique closest match in the control group, and
also in the case where treated units have zero idiosyncratic errors.
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where Z = {Y,D,X} is the entire sample. Abadie and Imbens (2006) show (in Corollary

1) that
√
N1(τ̂

t − τ t)/σtN is asymptotically normal, so (1.8) implies the following:

Var
(√

N1

(
τ̂ t∗ − τ̂ t

)
| Z
)
− (σtN )2 →p 0 (1.9)∣∣∣Pr

{√
N1

(
τ̂ t∗ − τ̂ t

)
/σtN ≤ t | Z

}
− Φ(t)

∣∣∣→p 0 ∀ t ∈ R (1.10)

Intuitively, (1.9) requires that the bootstrapped estimates τ̂ t∗ have the correct variance,

and (1.10) requires that the bootstrapped estimates are asymptotically normally distributed.

Note that either condition failing to hold is sufficient to prove that the bootstrap does not

work. I will give an abbreviated proof here, as the failure is interesting.

It is possible to recover a representation for τ̂ t∗ from the proposed bootstrap procedure,

τ̂ t∗ = τ̂ t +
1

N1

N∑
i=1

Diξ̂iε
∗
i (1.11)

This representation can be decomposed into a form involving estimated population pa-

rameters and the parameters themselves:

τ̂ t∗ = τ̂ t +
1

N1

N∑
i=1

Diξiε
∗
i +

1

N1

N∑
i=1

Di

(
ξ̂i − ξi

)
ε∗i

= τ̂ t + T t∗N +Qt∗N +Rt∗N (1.12)

where

T t∗N =
1

N1

N∑
i=1

Di

(
µ(1, Xi)− µ(0, Xi)− τ t

)
ε∗i

Qt∗N =
1

N1

N∑
i=1

Di

(
Yi(1)− Ŷi(0)− µ(1, Xi) + µ(0, Xi)

)
ε∗i

Rt∗N =
1

N1

N∑
i=1

Di

(
τ t − τ̂ t

)
ε∗i (1.13)

In simple terms, T t∗N is a term capturing the differences between the true treatment effect

at some value of Xi and the ATT. Qt∗N captures the variance contributed by the ‘quality’ of

the matches as well as some remainder terms, and Rt∗N is a pure remainder term.
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Noting that
√
N1

(
τ̂ t∗ − τ̂ t

)
=
√
N1

(
T t∗N +Qt∗N +Rt∗N

)
, it follows that

Var
(√

N1

(
τ̂ t∗ − τ̂ t

)
| Z
)

= N1E
[
(T t∗N )2 + (Qt∗N )2 + (Rt∗N )2 | Z

]
+N1E

[
2
(
T t∗NQ

t∗
N + T t∗N R

t∗
N +Qt∗NR

t∗
N

)
| Z
]

(1.14)

Under assumptions A1-A4, the following results hold:

E
[
N1(T

t∗
N )2 | Z

]
→p (σt2)

2

E
[
N1(Q

t∗
N )2 | Z

]
→p (σt1N )′

E
[
N1(R

t∗
N )2 | Z

]
is Op(N

−1/2
1 )

E
[
2N1

(
T t∗NQ

t∗
N + T t∗N R

t∗
N +Qt∗NR

t∗
N

)
| Z
]

= 0 (1.15)

The full proof is relegated to Appendix A. Note that E
[
N1(Q

t∗
N )2 | Z

]
does not con-

verge to (σt1N )2. This is the failure of the bootstrap procedure. Instead, E
[
N1(Q

t∗
N )2 | Z

]
converges to (σt1N )′,

(σt1N )′ =
1

N1

N∑
i=1

(
Di + (1−Di)

1

M
Ki

)
σ2(Di, Xi) (1.16)

When contrasted with (σt1N )2, the term involving Ki lacks a power of two. It is easy

to see from this why the bootstrap works when each treated unit has a unique matching

control unit - in that case, Ki = 1 for all i, so the missing power of two has no effect and

(σt1N )′ = (σt1N )2. Due to this failure, the variance of the bootstrapped τ̂ t∗’s is incorrect,

and thus the bootstrap consistency condition does not hold.

1.4 Simulations

In this section, I use the data generating process from Abadie and Imbens (2008), which

is described as follows:

1. The marginal distribution of X is uniform on the interval [0, 1].

2. The ratio of treated units to control units is N1/N0 = α for some positive α.
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3. The propensity score e(X) = Pr [D = 1 | X = x] is a constant function of α.

4. The distribution of Y (1) is degenerate, with Pr [Yi(1) = τ ] = 1.

5. The conditional distribution of Y (0) | X = x is standard normal.

This DGP enabled Abadie and Imbens (2008) to find an analytic representation for both

the conditional and unconditional variance of τ̂ t,

Var
(
τ̂ t
)

=
1

N1
+

3

2

(N1 − 1)(N0 + 8/3)

N1(N0 + 1)(N0 + 2)

Var
(
τ̂ t | Z

)
=

1

N2
1

N∑
i=1

K2
i (1.17)

To provide evidence not merely of a failure in the bootstrap procedure, but of the

exact failure identified above, I construct a synthetically corrected bootstrap estimator by

calculating T t∗N , Rt∗N , and (σt1N )2 directly in each bootstrapped sample. The synthetically

corrected bootstrap estimator is given by

τ̂ t∗s = τ̂ t + T t∗N + (σt1N )2 +Rt∗N (1.18)

This estimator can be thought of as what a correct bootstrap procedure analogous to

the proposed bootstrap would produce, if it were possible to correct the procedure without

conditional mean estimation. All results that follow come from a 10,000-iteration Monte-

Carlo simulation, with τ t = 5 and 200 bootstraps per iteration.

Figure 1.1 represents a baseline case, with N = 1000 and an equal number of treated

and control units. The proposed bootstrap (histogram in red) consistently underestimates

the true variance of the matching estimator by a significant margin. The synthetically cor-

rected bootstrap (turquoise) correctly estimates the target variance. Given the theoretical

underpinnings of the failure, this is expected. The missing power in (σt1N )′ will result in

underestimated variance whenever
∑N

i=1(Di + (1−Di)
1
MKi) <

∑N
i=1(DI + (1−Di)

1
MKi)

2,

and this will almost always occur when the ratio of treated to control units is close to one.

This logic suggests that in settings with significantly more control observations (i.e.

α << 1), the proposed bootstrap will underestimate the target variance by a smaller
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amount. This is because decreasing α causes the probability of any Ki exceeding 1 to

decrease. Simulations confirm this conjecture. Figure 1.2 is the same simulation as Figure

1.1, except with 3 times as many control units for an α of 1
3 .

Figure 1.1 Proposed and Synthetically Corrected Bootstrap (α = 1)

The rate at which the proposed bootstrap approaches the correct variance as α ap-

proaches 0 is very slow. Figure 1.3 displays the results from a simulation with α = 0.05, and

still the proposed bootstrap underestimates the target variance by a problematic amount.

In the appendix, I present simulation results for the estimation of the average treat-

ment effect on the untreated population (the ATC). The Abadie and Imbens (2008) data

generating process causes the failure in the proposed bootstrap to disappear due to the

degenerate distribution of Y (1). With a data generating process designed to be analogous

to the Abadie and Imbens (2008) process but for ATC estimation, exactly the same failure

would obtain.
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Figure 1.2 Proposed and Synthetically Corrected Bootstrap (α = 1/3)

1.5 Conclusion

I proposed a prima facie reasonable bootstrap for estimating the variance of the match-

ing estimator of the ATT when bias correction is unnecessary. I identified a flaw in the

procedure, which is not a failure to estimate the distribution of Ki as in the naive boot-

strap. Instead, the failure is related to the way in which control (treated) observations

contribute variance to the final estimator of the ATT (ATC). The distribution of Ki is

an important component of the variance of τ̂ t because it determines how important the

idiosyncratic error of unit i is to that variance. The proposed bootstrap fails to correctly

perturb the idiosyncratic errors of control units, leading to a consistent underestimation of

the true variance.
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Figure 1.3 Proposed and Synthetically Corrected Bootstrap (α = 0.05)

Otsu and Rai (2017) avoid this issue by sampling and bootstrapping two separate resid-

uals. They construct these residuals by estimating the conditional mean functions µ(0, x)

and µ(1, x). Avoiding the estimation errors associated with using the estimated functions

µ̂(0, x) and µ̂(1, x) in the bootstrap was the was the leading source of potential improve-

ments motivating this bootstrap. Thus, it appears that Otsu and Rai (2017) is currently

the most efficient wild bootstrap procedure for estimating the variance of the matching

estimator for treatment effects.

It is possible that a more complex bootstrap procedure may work specifically for es-

timating the average treatment effect for the whole population, when bias correction is

unnecessary. Otsu and Rai (2017) requires only that µ̂(d, x) satisfies a condition on con-

vergence rates, which may be satisfied by the implicit estimator µ̂(Di, Xi) = ̂Yi(Di, Xi)

constructed in the normal matching estimator. If so, it would be possible to perform the
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Otsu and Rai (2017) bootstrap without adding an extra step to estimate µ̂(d, x) by using the

implicit estimator. However, it is unlikely that performance improvements could be gained,

as estimation errors would still affect the final bootstrap results and the estimation errors

associated with the implicit estimator are likely to be large compared to explicit estimators

of conditional mean functions. Otsu and Rai (2017) also note that when bias correction is

unnecessary, it is possible to construct a valid subsampling procedure based on Politis and

Romano (1994) that does not require estimation of µ̂(d, x), although the computational cost

of this procedure is significant compared to a wild bootstrap and the procedure is sensitive

to the choice of subsample size when N is not large.
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CHAPTER 2. MATCHING AS WEIGHT SELECTION: A

FRAMEWORK FOR EVALUATING MATCHING ALGORITHMS

Due to non-smooth behavior of matching estimators, the bias/variance trade-offs asso-

ciated with changes in the matching procedure are opaque. This leaves practitioners with

limited guidance when choosing a matching procedure and its parameters. I cast matching

estimators as a subset of a larger class of weighting estimators and use insights gained from

considering optimal weights to offer further guidance in selection of matching procedures,

selection of smoothing parameters, and potentially fruitful directions for future research.

2.1 Introduction

Matching estimation techniques have significant intuitive appeal and are relatively easy

to implement. It is thus no surprise that despite Abadie and Imbens (2006) showing that

they fail to reach the semi-parametric efficiency bound, they remain a popular approach

to program evaluation. Perhaps due to the intuitive simplicity, a number of different ap-

proaches to matching have been proposed, none of which are obviously more or less plausible

than others.

Practitioners today face a choice set that includesM−nearest neighbor matching (Abadie

and Imbens, 2006), caliper matching (Cochran and Rubin, 1973), radius matching (Dehejia

and Wahba, 1999), coarsened exact matching (Iacus et al., 2009), matching on the propen-

sity score (Rosenbaum and Rubin, 1983, 1985) and genetic matching (Diamond and Sekhon,

2013). In addition, each of these procedures requires the choice of at least one smoothing

parameter (e.g. number of matches, kernel and bandwidth, degree of coarsening). King
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et al. (2011) suggests that researchers should conduct an “extensive, iterative, and typically

manual search across different matching solutions,” but this is unrealistically difficult to

execute in practicer, and it is not clear what one should look for in this search.

In this chapter I aim to aid researchers facing this choice set by developing a framework

that shrinks the relevant search space, identifying ‘directions’ within that space in which

improvements are more or less likely to be found. This is accomplished by casting matching

procedures as weight selectors which are followed by simple weighted difference-in-means

estimation. Recasting matching estimators in this way allows me to identify infeasible

optimal weights, and use the deviations from optimal weighting to generate insights about

competing matching procedures.

This chapter’s main contribution is to derive weights which are optimal in the sense

of reducing mean-squared error (MSE), weights that are sometimes estimable1. First, I

show that in the unconstrained case optimal weights are nonzero (outside of a degenerate

case). I extend the result and prove that - subject to mild regularity conditions - the

MSE-optimal weights are nonzero in situations that closely approximate those that apply

to weights generated by matching. Using this insight, I develop a illustrative ‘augmented’

matching algorithm and verify through simulations that it behaves as my results suggest,

confirming the validity of said insights. Further, the illustrative procedure sheds light on

how important it is to avoid nonzero weights as features of the data-generating process

change.

Overall, my results suggest that some form of kernel matching is likely to be most

promising current approach in practice, as well as the most promising approach for further

development of matching procedures. This is primarily due to the flexibility inherent in

kernel matching, and echoes results from Armstrong and Kolesár (2018), who arrive at

their conclusions from the consideration of worst-case MSE for weighting estimators in

general.

1However, due to the form of the optimal weight functions, the cumulative effect of estimation errors is
likely to limit the gains from using estimated optimal weights.
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The approach I take necessitates conditioning on the sample, which has both pros and

cons2. As Armstrong and Kolesár (2018) note, conditioning on the sample and realized

treatment assignments takes into account the finite-sample possibility that imbalance may

be present even with random assignment, but also precludes the use of the propensity score

to gain efficiency. Like Armstrong and Kolesár, I do not intend to argue for or against

conditioning on the sample - both approaches are valuable for understanding the behavior

of program evaluation estimators.

This chapter contributes to a robust literature that offers advice to researchers choosing

matching procedures and smoothing parameters. One strand of this literature contributes

via simulation studies which contrast different matching procedures and smoothing param-

eters. For instance, Huber et al. (2013) generates data intended to replicate the features

of a labor market dataset from Germany, and finds that radius matching with a regression

adjustment performs best overall. Zhao (2004) considers the choice of the distance metric

used in the matching procedure, a question that has received surprisingly little attention.

King and Nielsen (2016) argues that propensity-score based pruning methods are inferior

to other pruning methods (a claim presaged by Hahn, 1998).

Another strand of literature considers the use of weighting estimators for treatment

effects more generally, without a strong focus on the connection to the method of match-

ing. Most recently, Kallus (2016) and Armstrong and Kolesár (2018) develop methods of

choosing weights that minimize worst-case MSE. Armstrong and Kolesár (2018) go on to

provide asymptotically valid confidence intervals for a class ‘minimax’ optimal estimators

they propose. Such ‘minimax’ estimators are designed to limit the MSE of an estimator

subjected to a ‘worst-case’ data-generating process, characterized by a smoothness restric-

tion on the conditional mean function. Hazlett (2016) develops a method to determine

which weights achieve unbiased estimation of the average treatment effect on the treated.

Hainmueller (2012) proposes a weight-selection algorithm that determines weights based on

2For a detailed discussion of this point, see Abadie et al. (2014))
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moment conditions selected by the researcher, and Chan et al. (2015) employs a similar

approach to develop a globally efficient calibration estimator. In contrast to this chapter,

this strand of literature is generally concerned with cases where there is misspecification in

either the regression function or the propensity score model.

The remainder of the chapter is organized as follows. Section 2.2 introduces notation

and shows how matching estimators can be represented as weight selection procedures.

In Section 2.3, I derive optimal weights for unconstrained and constrained cases, prove

that optimal constrained weights are nonzero subject to mild regularity conditions, and

offer some intuition for why this is true. In Section 2.4, I use that intuition to develop a

simple ‘augmented’ matching procedure, and contrast it’s behavior with nearest-neighbor

matching and caliper matching through simulation. Finally, in Section 2.5 I conclude and

suggest some directions for future research.

2.2 Setup & Notation

My notation closely follows Otsu and Rai (2017). We observe a dataset of size N ,

consisting of N1 units that received treatment and N0 units that did not. For each unit

i = 1, ..., N , we observe a binary treatment indicator Di, a covariate (potentially vector-

valued) Xi, and an outcome,

Yi =


Yi(0) if Di = 0,

Yi(1) if Di = 1

where Yi(1) and Yi(0) are the potential outcomes for unit i if Di = 1 and Di = 0 respec-

tively. Given this sample, we seek to estimate the average treatment effect for the treated

population3 (henceforth, the ATT)

τ t = E [Yi(1)− Yi(0) | Di = 1]

3Extension of my results to the case of the average treatment effect for the untreated population (the
ATC) is straightforward. Extension to the case of the average treatment effect for the whole population (the
ATE) is less so, but can most easily be recovered by noting that the ATE is a weighted average of the ATT
and the ATC.
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To gain traction on this estimand, it is necessary that treatment is partially uncon-

founded4, that the probability of treatment assignment is bounded away from 1, and that

the sample is composed of conditionally independent draws from the population distribu-

tion. Formally,

A1. D is independent of Y (0) conditional on X = x.

A2. Pr [D = 1 | X = x] < 1− c for some c > 0.

A3. Conditional on Di = d, the sample consists of independent draws from Y,X | D = d

for d ∈ {0, 1}.

These assumptions are standard in the matching literature. Assumptions A1 and A3

together are often referred to as ‘selection on observables’. They ensures that the potential

outcomes of two observations i and j will be equal if Xi = Xj , a requirement for match-

ing estimators to be asymptotically consistent. Assumption A2, often called the ’overlap’

condition, ensures that there are no portions of the covariate space in which all units are

treated. If overlap does not hold, the ATT is not identified for subsets of the covariate

space.

Before casting matching as a weight-selection procedure, let µ(x, d) = E [Y | X = x,D = d],

σ2(x, d) = Var (Y | X = x,D = d), and further let εi = Yi − µ(Xi, Di). Let I {A} be the

indicator function that returns 1 when A is true, and 0 otherwise. Let |x| = (x′x)1/2 be the

standard Euclidean vector norm. Let JM (i) be defined as

JM (i) =

j ∈ {1, ..., N} : Dj = 1−Di,
∑

Dl=1−Di

I {|Xl −Xi| ≤ |Xj −Xi|} ≤M

 (2.1)

The standard M -nearest neighbor matching estimator for the ATT is then given by

τ̂ t =
1

N1

∑
Di=1

(
Yi − Ŷi(0)

)
(2.2)

4Full unconfoundedness would be necessary when estimating the ATE.
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where

Ŷi(0) =


Yi if Di = 0,

1
M

∑
j∈JM (i) Yj if Di = 1

In simple terms, the M -nearest neighbor matching estimator imputes the value of Ŷi(0)

as the average outcome values of the M control units with covariates closest to Xi. To recast

matching as a weight-selection procedure, I will make use of an alternative representation

from Abadie and Imbens (2006). First, define,

KM (i) =
N∑
j=1

I {i ∈ JM (j)} (2.3)

KM (i) tracks the number of times that unit i is used as a match for another unit. To

illustrate with a degenerate case, if N1 = 10 and N0 = 1, all 10 treated units would be

matched to the single control unit. The value of KM (i) for that control unit would then

be 10. Since it is more common to match with replacement, even in non-degenerate cases

KM (i) can often be larger than 1. By convention, when estimating the ATT, KM (i) = 0

when Di = 1. It is straightforward to show that (2.2) can be represented as

τ̂ t =
1

N1

∑
Di=1

Yi −
1

MN1

∑
Di=0

KM (i)Yi (2.4)

By the nature of the M -nearest neighbor matching estimator,
∑

Di=0KM (i) = MN1.

Letting ki = KM (i)/
∑

Di=0KM (i), we can rewrite (2.4) as

τ̂ t =
1

N1

∑
Di=1

Yi −
∑
Di=0

kiYi (2.5)

which is a weighted difference-in-means estimator.

2.3 Optimal Weights

2.3.1 Unconstrained Weights

It is natural to ask at this point what the optimal value of the vector ki is, and minimizing

MSE is a natural objective to consider. Following Abadie and Imbens (2006), I characterize
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the MSE of (2.5) in a useful way. Define the sample average treatment effect on the treated

(SATT):

τ t(X) =
1

N1

N∑
i=1

(µ(1, Xi)− µ(0, Xi))

and note that the difference between τ̂ t and the SATT is

τ̂ t − τ t(X) =
1

N1

∑
Di=1

Yi −
∑
Di=0

kiYi −
1

N1

∑
Di=1

µ(Xi, 1) +
1

N1

∑
Di=1

µ(Xi, 0) (2.6)

Recall that εi = Yi − µ(Xi, Di), and decompose the first term above to get

τ̂ t − τ t(X) =
1

N1

∑
Di=1

εi −
∑
Di=0

kiYi +
1

N1

∑
Di=1

µ(Xi, 0)

The error associated with τ̂ t is thus

τ̂ t − τ =
(
τ t(X)− τ

)
+

1

N1

∑
Di=1

εi −
∑
Di=0

kiYi +
1

N1

∑
Di=1

µ(Xi, 0)

This offers a clear intuitive understanding of what an optimal vector of weights ki would

do. We cannot affect the value of
(
τ t(X)− τ

)
through our estimation procedure - it is a

function of the sampling procedure. The role of ki is to turn
∑

Di=0 kiYi into an estimate of

1
N1

∑
Di=1 µ(Xi, 0), the average of the unobserved counterfactual outcomes for the treated

arm. The problem of minimizing MSE is isomorphic to the problem of setting the weighted

sum of random variables to be as close as possible to some constant value. For ease of

exposition, let 1
N1

∑
Di=1 µ(Xi, 0) = µ(XD1 , 0). Minimizing the MSE of the estimator in

(2.5) is equivalent to solving

min
ki

E

µ(XD1 , 0)−
∑
Di=0

kiYi

2 (2.7)

The solution to this problem leads to my first result:

Theorem 1 Let σ2(Xi, Di) = σ2i . If σ2i 6= σ2j in general, the weights {ki} that solve the

minimization problem in (2.7) are given by:

k∗i = µ(XD1 , 0)µ(Xi, 0)

∏
j 6=i σ

2
j∑N

i=1

(
µ(Xi, 0)2

∏
j 6=i σ

2
j

)
+
∏N
i=1 σ

2
i
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All proofs are relegated to the appendix. The requirement that σ2i 6= σ2j rules out the

simplest form of homoskedasticity and is required to prevent the minimization problem

from becoming degenerate. If σ2i is a non-degenerate function of the covariate vector Xi,

Theorem 1 holds and the k∗i is at least in principle identified.

Some features of the optimal weight vector are worth noting at this point. As one

would expect, if σ2i is lower than σ2j , k
∗
i will be larger than k∗j if i and j have equivalent

conditional means. In addition, the optimal weight vector {k∗i } contains no zero elements

unless µ(Xi, 0) = 0 for some i, or µ(XD1 , 0) = 0, both of which are degenerate cases.

2.3.2 Constrained Weights

Unconstrained weights are of limited use for evaluation of matching procedures, because

without constraints weights can be negative and can sum to something other than 1. Neither

of these outcomes is a ‘legal’ outcome of any commonly used matching procedure.

Different matching procedures have different finite-sample constraints. For instance, if

one uses M nearest-neighbor matching, conditional on the sample the only weights that can

be generated are integer multiples of 1
MN1

. By way of contrast, kernel matching is capable

of producing weights that lie anywhere on the interval [0, 1].

However, weights that are optimal subject to sample-specific constraints are unlikely to

be useful in comparisons of different matching procedures - at best, they may shed light

on the trade-offs involved in the choice of smoothing parameters. These trade-offs are

less opaque, so I will focus on constraints that are shared across matching procedures - in

particular, that individual weights are non-negative and that the weight vector sums to 1.

One can think of these as the ‘asymptotic’ constraints that obtain on matching procedures

- if the sample size is unknown, these are the constraints that obtain for all matching

procedures. Further refinement of the constraints is impossible without knowledge of the

sample size.
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Theorem 2 provides a characterization of the MSE-optimal weights, subject to the con-

straint that weights are non-negative and sum to 1.

Theorem 2 The weights {k∗i } that solve the minimization problem in (2.7), subject to

ki > 0 ∀i and
∑N

i=1 ki = 1, are given by:

kc∗i =
1− Y1

∑N0
i=1

Yi
σ2
i

+
∑N0

i=1
Y 2
i

σ2
i

+ µ(XD1 , 0)
(
Y1
∑N0

i=1
1
σ2
i
−
∑N0

i=1
Yi
σ2
i

)
σ2i

(∑N0
i=1

1
σ2
i

+
(∑N0

i=1
Y 2
i

σ2
i

)(∑N0
i=1

1
σ2
i

)
−
(∑N0

i=1
Yi
σ2
i

)2)

+

∑N0
i=1

1
σ2
i

Y1
∑N0

i=1
1
σ2
i
−
∑N0

i=1
Yi
σ2
i

σ21 (Y1 − Yi)
σ2i

(2.8)

Unfortunately, the form of kc∗i is not illuminating - it is, for instance, not at all clear

what guarantees that kc∗i is non-zero. In order to derive a strict positivity result for kc∗i , I

require an additional assumption:

A4. µ(XD1 , 0) lies strictly between mini [µ(Xi, 0) | Di = 0] and maxi [µ(Xi, 0 | Di = 0)].

This assumption, while it appears quite restrictive, is rather general. It can be thought

of as a finite-sample analog to the overlap condition A2. In most cases, if A4 is violated it

is likely that AI.2 is violated as well. However, it is possible that A4 is violated without

violating A2 in very small samples, or with extremely large values of σ2i . In either case, if A4

is violated, matching estimation will likely perform poorly with any matching procedure.

With this additional assumption, a strict positivity result for {kc∗i } can be proven,

Lemma 1 Given assumptions A1 through A4, the MSE-optimal weight vector {kc∗i } con-

tains no zero elements.

I again relegate the full proof of Lemma 1 to the appendix. In simple terms, the proof

works by showing that a vector containing a zero element can always be modified in a way

that both removes the zero element and strictly reduces MSE - similar to how proofs related

to Nash Equilibria search for profitable deviations.

The reason Lemma 1 is true relates to the shape of the function that describes the

change in MSE when weight is ‘shifted’ from one observation to another. This function is
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strictly concave and is always strictly increasing in a neighborhood around a zero ‘shift’, for

appropriately selected observations. Intuitively, the ‘change in MSE function’ has this shape

because the variance of the resulting estimator increases as a function of the squared weight

on observations, while the bias increases as a function of the weight itself. The MSE-optimal

weight vector never generates an unbiased estimate of the ATT - as one would expect, it

achieves the minimal MSE by making ‘profitable’ trade-offs between bias and variance until

no such trade-off remains.

2.4 Evaluating Matching Procedures

2.4.1 ‘Augmented’ Matching

Lemma 1 is an interesting result from the perspective of one seeking to evaluate matching

procedures. To the best of my knowledge, no commonly used matching procedure is designed

to lower the chances of zero elements in the weight vector. Indeed, in some common settings

many matching procedures will generate a wealth of zeros in the weight vector. However,

the proof of Lemma 1 makes clear that the optimal weights, while nonzero, are nonetheless

vanishingly small when the ‘quality’ of a match5 is poor. If one is doing nearest-neighbor

matching with M = 1, it is entirely possible that zero weights are closer to optimal than the

lowest positive weight that can be assigned. Nonetheless, Lemma 1 suggests that we should

consider more carefully the situations that can cause zero weights, and consider whether

those weights should truly be zero.

A less obvious insight from Lemma 1 is that units with similar conditional means and

similar variances should receive similar weights. It is this insight which guides the ‘aug-

mented’ matching algorithm proposed below. The algorithm below is to estimate the ATT,

but the extension to other estimands is immediate.

5In contrast to Chapter 1, I refer here to ‘quality’ in the sense of how far µ(Xi, 0) is from µ(XD1 , 0), not
how far µ(Xi, Di) is from some matched unit’s µ(Xj , Di).
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‘Augmented’ Matching for the ATT

1. Perform standard nearest-neighbor matching with M = 1.

2. For each treated unit i, define a distance ri = |Xi − Xm(i)| + δ, where m(i) returns

the index of the matched control unit from step 1.

3. Search for control units whose covariates lie within a ball of radius ri around Xi. If

such control units exist, assign them as matches for unit i as well.

4. Use the resulting matches and weight vector to estimate τ t.

This procedure encapsulates nearest-neighbor matching as a special case (if δ is set to

zero, it is numerically identical to nearest-neighbor matching with M = 1). The idea is

that, having already matched Xi to Xm(i), it is likely that units some small δ further away

are good enough matches to generate a variance decrease that outweighs the bias increase

that comes from making a worse match.

To be clear, I am not advancing this procedure as the best that can be done given

these insights. Rather, it is to illustrate that the insights derived are valid, and that this

framework for evaluating matching procedures works. As I will show with simulations, this

augmented matching procedure is too simple, but it serves to refine the insights derived so

far.

2.4.2 Simulation Evidence

For my simulations, I designed a data-generating process that allows for a number of

modifications that shed light on the relative performance of nearest-neighbor and augmented

matching. The basic framework is quite simple - the outcome variable Yi is constructed as

Yi = Xi + Diτ(Xi) + εi. I vary the distribution of Xi and εi across simulations. τ(Xi)

is defined as τ(Xi) = I{Xi ≥ 0}
(
Xi + 2X2

i − 0.4X3
i

)
, to generate a conditional average

treatment effect function with significant heterogeneity.
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First, I draw Xi from a uniform distribution between 0 and 6. For each unit i, I also

draw σ2i from a uniform distribution between 2 and 5, and then draw εi from a mean-

zero normal distribution with appropriate variance. I consider two matching procedures -

nearest-neighbor matching with M neighbors and augmented matching as described above.

I consider five different values of M and δ. Finally, I consider two cases for the sample -

one with 500 units in each treatment arm, and one with 250 treated units and 750 control

units. Table 2.1 presents the results, with 1000 simulations in each row.

Table 2.1 High Variance, Uniform X

N1/N0 Matching Procedure ATT MSE ATC MSE ATE MSE

1 NN Matching M = 1 0.094 0.099 0.077

NN Matching M = 2 0.076 0.078 0.067

NN Matching M = 3 0.069 0.072 0.065

NN Matching M = 4 0.066 0.069 0.062

NN Matching M = 5 0.065 0.066 0.061

1 Augmented Matching δ = 0.25 0.063 0.146 0.080

Augmented Matching δ = 0.50 0.063 0.234 0.102

Augmented Matching δ = 0.75 0.063 0.352 0.131

Augmented Matching δ = 1.00 0.063 0.480 0.163

Augmented Matching δ = 1.25 0.064 0.605 0.194

1/3 NN Matching M = 1 0.142 0.114 0.100

NN Matching M = 2 0.108 0.096 0.089

NN Matching M = 3 0.095 0.088 0.083

NN Matching M = 4 0.090 0.085 0.081

NN Matching M = 5 0.086 0.083 0.080

1/3 Augmented Matching δ = 0.25 0.078 0.202 0.147

Augmented Matching δ = 0.50 0.078 0.293 0.198

Augmented Matching δ = 0.75 0.078 0.412 0.266

Augmented Matching δ = 1.00 0.078 0.541 0.340

Augmented Matching δ = 1.25 0.078 0.664 0.410

When estimating the ATT, the ‘quality’ of a match is simply |Xi − Xm(i)|, while for

the ATC the ‘quality’ is |τ(Xi) − τ(Xm(i))|. With this data generating process, the latter

grows dramatically faster than the former with the difference between Xi and Xm(i). This

explains the relatively poor performance of augmented matching in the ATC case.
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The ATT case makes clear that the idea of augmented matching works in some settings.

Note that even with M = 5, augmented matching outperforms nearest-neighbor matching

with any tested value of δ. This illustrates the chief advantages of augmented matching

over changing M - it allows for a different number of matches to be found for any given

unit, and has a large ‘sweet spot’ for values of δ when match ‘quality’ is relatively flat.

In a second simulation, I change the distribution of σ2i to a uniform distribution between

1 and 2, significantly restricting the potential size of idiosyncratic errors. Otherwise, the

data-generating process was unchanged. Table 2.2 reports the results.

Lowering the size of idiosyncratic errors on observations would be expected to reduce

the relative importance of variance in determining total MSE. Thus, one would expect

augmented matching to perform more poorly relative to nearest neighbor matching in this

simulation, and that is precisely what is observed.

Table 2.2 Low Variance, Uniform X

N1/N0 Matching Procedure ATT MSE ATC MSE ATE MSE

1 NN Matching M = 1 0.017 0.018 0.014

NN Matching M = 2 0.014 0.014 0.012

NN Matching M = 3 0.012 0.013 0.011

NN Matching M = 4 0.012 0.012 0.011

NN Matching M = 5 0.012 0.012 0.011

1 Augmented Matching δ = 0.25 0.016 0.097 0.033

Augmented Matching δ = 0.50 0.016 0.186 0.055

Augmented Matching δ = 0.75 0.016 0.304 0.084

Augmented Matching δ = 1.00 0.016 0.433 0.117

Augmented Matching δ = 1.25 0.016 0.558 0.148

1/3 NN Matching M = 1 0.025 0.021 0.018

NN Matching M = 2 0.019 0.017 0.016

NN Matching M = 3 0.017 0.016 0.015

NN Matching M = 4 0.016 0.015 0.015

NN Matching M = 5 0.086 0.083 0.080

1/3 Augmented Matching δ = 0.25 0.018 0.137 0.08

Augmented Matching δ = 0.50 0.018 0.225 0.133

Augmented Matching δ = 0.75 0.018 0.340 0.200

Augmented Matching δ = 1.00 0.018 0.466 0.270

Augmented Matching δ = 1.25 0.078 0.664 0.410
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One potential issue with the augmented matching algorithm is that δ is fixed for all

units. In practice, if the distribution of observations within the covariate space diverges

significantly from a uniform distribution, this may cause augmented matching to perform

quite poorly. In particular, in areas of the covariate space where observations are sparse,

augmented matching is likely to make a small number of additional matches, and those

additional matches are likely to be poor quality.

To investigate this possibility, in Table 2.3 I change the data-generating process, draw-

ing Xi from a N(0, 2) distribution. This generates a large mass of units around 0, with

significantly fewer units available as one moves away from 0. I return to the high-variance

case in terms of idiosyncratic errors, drawing σ2i from a U [2, 5] distribution.

Table 2.3 High Variance, Normal X

N1/N0 Matching Procedure ATT MSE ATC MSE ATE MSE

1 NN Matching M = 1 0.088 0.088 0.068

NN Matching M = 2 0.067 0.070 0.058

NN Matching M = 3 0.063 0.065 0.057

NN Matching M = 4 0.062 0.063 0.056

NN Matching M = 5 0.059 0.062 0.056

1 Augmented Matching δ = 0.25 0.062 0.414 0.146

Augmented Matching δ = 0.50 0.062 0.415 0.147

Augmented Matching δ = 0.75 0.062 0.406 0.145

Augmented Matching δ = 1.00 0.062 0.391 0.141

Augmented Matching δ = 1.25 0.062 0.371 0.137

1/3 NN Matching M = 1 0.123 0.114 0.098

NN Matching M = 2 0.097 0.094 0.084

NN Matching M = 3 0.086 0.087 0.079

NN Matching M = 4 0.081 0.083 0.077

NN Matching M = 5 0.078 0.081 0.075

1/3 Augmented Matching δ = 0.25 0.076 0.430 0.276

Augmented Matching δ = 0.50 0.076 0.441 0.282

Augmented Matching δ = 0.75 0.076 0.435 0.279

Augmented Matching δ = 1.00 0.076 0.421 0.271

Augmented Matching δ = 1.25 0.076 0.404 0.262
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Somewhat surprisingly, the story is largely unchanged from the previous simulations.

The relative comparison between nearest neighbor matching and augmented matching is

similar to before, and nearest neighbor matching is not noticeably outperforming relative

to when covariates were distributed uniformly.

For thoroughness, Table 2.4 reports results from a final simulation that draws σ2i from

a U [1, 2] distribution.

Table 2.4 Low Variance, Normal X

N1/N0 Matching Procedure ATT MSE ATC MSE ATE MSE

1 NN Matching M = 1 0.016 0.017 0.013

NN Matching M = 2 0.012 0.015 0.011

NN Matching M = 3 0.011 0.014 0.011

NN Matching M = 4 0.011 0.015 0.011

NN Matching M = 5 0.011 0.015 0.011

1 Augmented Matching δ = 0.25 0.016 0.373 0.103

Augmented Matching δ = 0.50 0.016 0.374 0.104

Augmented Matching δ = 0.75 0.016 0.365 0.102

Augmented Matching δ = 1.00 0.017 0.349 0.099

Augmented Matching δ = 1.25 0.017 0.330 0.095

1/3 NN Matching M = 1 0.022 0.023 0.019

NN Matching M = 2 0.017 0.020 0.017

NN Matching M = 3 0.015 0.019 0.016

NN Matching M = 4 0.014 0.019 0.016

NN Matching M = 5 0.014 0.019 0.016

1/3 Augmented Matching δ = 0.25 0.020 0.361 0.212

Augmented Matching δ = 0.50 0.020 0.373 0.218

Augmented Matching δ = 0.75 0.020 0.367 0.216

Augmented Matching δ = 1.00 0.020 0.354 0.209

Augmented Matching δ = 1.25 0.020 0.337 0.200

It is interesting to note that when X is distributed normally, augmented matching

performs better in the ATC case as δ increases - a reversal of the behavior observed when

X was distributed uniformly. However, it is clear that augmented matching in this form is

not an appropriate technique for the estimation of the ATC, due to the relatively higher

importance of bias in that case.
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2.4.3 Discussion

A clear implication of the simulation results is that the correct δ is different when

estimating the ATT and the ATC. Given the significant similarities between augmented

matching, radius matching, and kernel matching, it is likely that this is true for the latter

procedures as well. To the best of my knowledge, choosing the bandwidth separately for

the ATT and ATC is not a common approach in practice. Since the ATE is a weighted

average of the ATT and ATC, such a proposal is likely worth serious investigation, but it

is beyond the scope of this investigation.

The simulations make clear that the insights derived from considering the MSE-minimizing

weight vector are valid. In particular, practitioners should use economic intuition and knowl-

edge of the empirical context (where possible) to weigh the relative importance of idiosyn-

cratic errors and bias in the sample. In settings where bias is likely to be of low importance

(for instance, if it is likely that the treatment effect is constant across X and the parameter

of interest is the ATT), it is more likely that MSE can be reduced by matching to multiple

units, or using procedures like radius and kernel matching which have strong similarities to

the ‘augmented’ matching studied here. The same conclusion holds when there are many

more observations in the ‘donor pool’ than in the pool of units to be matched (e.g. when

estimating the ATT with many more control units than treated units).

2.5 Conclusion

Taking an approach similar to that of Armstrong and Kolesár (2018) and Kallus (2016),

I derived unconstrained MSE-minimizing weights, and MSE-minimizing weights subject to

constraints that approximate those implied by many common matching procedures. Subject

to a mild condition on covariate balance, MSE-minimizing weights are nonzero, and units

with similar conditional means receive similar weights.

I use an illustrative, and very simple, ‘augmented’ matching procedure that builds in

behavior meant to generate weights that are closer to MSE-optimal, and contrast it with
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nearest neighbor matching in a variety of settings. I find that the ‘augmented’ procedure

compares favorably to nearest-neighbor matching when idiosyncratic errors are an important

driver of MSE, while significantly under-performing when bias is relatively more important.

While the ‘augmented’ matching procedure itself is unsuitable for practical use in its

current form, it confirms the insights I derive from the contrast between MSE-minimizing

weights and weights from nearest neighbor matching. Practitioners can generate potentially

significant reductions in MSE by carefully considering what they can reasonably determine

about the data generating process, whether from economic intuition, knowledge of the

empirical context, or knowledge of the data gathering process. In particular, my results

suggest that defaulting to M nearest neighbor matching with M = 1 is likely to leave

efficiency gains on the table in many common settings, but is a good conservative approach.

This echoes Armstrong and Kolesár (2018), who note that when the data generating process

is sufficiently ‘bad’, the minimax optimal estimator is nearest neighbor matching with one

match.

Further development of the ‘augmented’ matching procedure may be worthwhile. In

particular, the implication that the optimal δ differs when estimating the ATT and the

ATC offers a potential route to cure the under-performance observed when bias is important,

through a data-driven selection of δ. It is worth investigating whether this extends to radius

and kernel matching procedures as well.
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CHAPTER 3. THE EFFECT OF TEACHER GENDER ON

STUDENTS OF DIFFERING ABILITY: EVIDENCE FROM A

RANDOMIZED EXPERIMENT

Gender dynamics may play an important role in the determination of student outcomes

in education. Exploiting random assignment of students to teachers in a field experiment,

I study heterogeneity in the impact of teacher gender on the math and reading test scores

for primary school students of differing ability. I find that assignment to a female teacher

is generally positive for male students while having no significant effect for female students.

In addition, I find very little heterogeneity in the effect of teacher gender on the ability axis,

suggesting that average effect estimates do not mask significant heterogeneity. My results

are consistent with differential teacher behavior based on gender stereotypes, and somewhat

inconsistent with differential student behavior based on gender stereotypes.

3.1 Introduction

Achievement on school tests has important implications for students in both the short

and the long run. In the short run, test scores serve as signals to students about their

ability and induce students to choose different educational paths (Mechtenberg, 2009; Lavy,

2008; Lavy and Sand, 2018; Terrier, 2016). In the long run, these choices have major

implications for lifetime earnings and health outcomes (Joensen and Nielsen, 2016; Autor

and Wasserman, 2013; Krueger, 2017). Gender dynamics between students and teachers

can play a significant role in determining student test score outcomes (Dee, 2005; Lavy,

2008; Antecol et al., 2015; Terrier, 2016).
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To date, the study of gender dynamics in the classroom has mostly considered average

effects, which can mask significant heterogeneity (Bitler et al., 2006). It is possible that the

effect of teacher gender on students might depend significantly on student ability, which

would have important implications for policy - particularly with regard to addressing in-

equality. For instance, male and female teachers may internalize different gender stereotypes

and thus react differently to low- or high-performing male or female students (Williams and

Ceci, 2015), or students may internalize different gender stereotypes and thus be more or

less receptive to teaching from teachers of a particular gender (Ouazad and Page, 2012).

In this chapter, I address this question by studying how the effect of assignment to a

female teacher changes with both the gender and ability of a student, using data from a

field experiment conducted to evaluate the Teach for America (TFA) Program. I estimate

the Conditional Average Treatment Effect (CATE) of assignment to a female teacher, con-

ditioning on student gender and on pre-treatment test score as a proxy for ability. The

CATE parameter is ideal for this study because it is a policy-relevant parameter that di-

rectly addresses the question of how student ability changes the effect of teacher gender on

student outcomes. My estimates show how the effect of being assigned to a female teacher

changes with both student gender and student ability.

Exploiting random assignment of students to teachers in the data allows me to deploy

non-parametric techniques that require the strong assumption of unconfoundedness rather

than imposing functional form restrictions. While the data is not representative of the U.S.

primary school student population overall, it is representative of the most disadvantaged

students and schools - a subset of particular importance to policymakers. Students in these

schools are less likely to continue on to higher education, and thus more likely to face the

challenges facing individuals without a college education in modern society1.

1Men with less than a four-year college education have seen a dramatic reduction in real income over the
last decade (Autor and Wasserman, 2013), are less likely to enter the labor force (Krueger, 2017), and face
increased risk of poverty, physical health problems, and mental health problems. The prospects for women
with less than a four-year college education are significantly worse than for women with more education, but
are less grim than those for men.
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I find very limited heterogeneity in the effect of teacher gender on students with different

levels of prior achievement. For male students, assignment to a female teacher has a nearly

uniform positive impact on math test scores. In reading, there is a small positive relationship

between student ability and the effect of assignment to a female teacher. For female students,

there is notably more heterogeneity in the effect of teacher gender. In math, there is a

stronger positive relationship between ability and the effect of teacher gender than for male

students, and some indication that the lowest-performing female students might be harmed

by assignment to a female teacher. In reading, there is a non-monotonic relationship between

student ability and the effect of teacher gender.

My results echo much of the previous economics literature in finding no significant

average effect of teacher gender on students. Outside of the bottom of the pre-treatment

test score distribution, the effect of assignment to a female teacher does not significantly

differ with student gender. At the very bottom of that distribution, female students may

benefit less than male students from assignment to female teachers in math. Notably, for

all students, the effect of assignment to a female teacher is either positive or insignificant,

which suggests that biases such as those found by Lavy (2008), Terrier (2016), or Cappelen

et al. (2019) are not present in primary school.

The remainder of this chapter is organized as follows. Section 3.2 reviews related lit-

erature. Section 3.3 discusses the data, the institutional background, and the experiment

itself. Section 3.4 briefly introduces the theoretical framework for the CATE estimator and

sets out my estimation strategy. Section 3.5 presents the main results. Section 3.6 considers

possible mechanisms and policy implications. Finally, Section 3.7 concludes.

3.2 Related Literature

In this chapter I contribute directly to the literature that studies student/teacher dy-

namics based on demographic features, and indirectly to a related strand of literature that

considers the underlying mechanisms.
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Reduced form estimates of the effect of demographic matching between students and

teachers go back to Ehrenberg et al. (1995), who found that demographic matching had

little impact on student learning, but a significant impact on teacher perceptions of stu-

dents, using NELS:882 data. Dee (2004) used Project STAR data to investigate the effect of

teacher race on students, finding a positive effect of same-race teachers on math and reading

for students. Dee (2005) exploited a unique feature of the NELS:88 data to control for stu-

dent fixed effects, again finding that student/teacher demographic dynamics had significant

effects on teacher perceptions. Dee (2007), restricting attention to gender dynamics, found

that assignment to a same-gender teacher significantly improved student test scores, teacher

perceptions of the student, and student engagement.

Tertiary education has also received significant attention. Bettinger and Long (2005) and

Hoffmann and Oreopoulos (2009) studied the effect of instructor gender on undergraduate

students using administrative data from different universities3. Hoffmann and Oreopoulos

(2009) found that assignment to a same-sex instructor boosted relative student performance

and likelihood of course completion, but had little impact on upper-year course selection.

Bettinger and Long (2005) found very mixed results - their primary conclusion is that

the effect of instructor gender changes dramatically based on the subject in question. For

instance, they found strong positive effects on female students in math and statistics, and

a weak effect in economics. They also add to the growing number of studies that find

negligible effects of instructor gender on male students.

Carrell et al. (2010), exploiting random assignment of students to teachers at the U.S.

Air Force Academy, found limited impacts of instructor gender on male students, but sig-

nificant positive impacts on female students in math and science. In contrast to Hoffmann

and Oreopoulos (2009), Carrell et al. (2010) finds significant impacts for upper-year course

selection. Fairlie et al. (2014), using administrative data from a community college, found

2The National Educational Longitudinal Study of 1988 consists of a representative sample of students
that were in 8th grade in 1988.

3Bettinger and Long (2005) uses data on full-time undergraduate students in Ohio during 1998 and 1999.
Hoffmann and Oreopoulos (2009) uses data on students at the University of Toronto.
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similar effects for instructor race - in particular, assignment to an instructor from an un-

derrepresented minority group shrinks the performance gap between white and minority

students.

In postgraduate education, Neumark and Gardecki (1998) found that job placement

outcomes for female graduate students in economics were not significantly impacted by

the addition of female faculty members or having a female dissertation chair, while finding

limited evidence for positive effects on graduation time and graduation likelihood. Hilmer

and Hilmer (2007) studied top-30 economics doctoral programs between 1990 and 1994,

and found that female students with male advisors were significantly more likely to accept

a research-oriented first job, but found little effect on early career publication success.

In recent years, some large additional datasets have become available to researchers.

Egalite et al. (2015) uses administrative from the Florida public school system to find small

but significant effects of teacher race/ethnicity on students. Winters et al. (2013), also using

Florida public school data, find that assignment to a female teacher positively impacts both

male and female students in math, primarily between the 6th and 10th grade levels.

One implication of this is that teacher gender may not have an effect on student outcomes

before middle school. However, there remains some uncertainty about when children begin

to understand or internalize gender stereotypes. Ambady et al. (2001) suggests that it

begins around 10 years of age, while Steele (2003) finds evidence suggesting that it begins

as early as 7 years of age. Antecol et al. (2015), using the same data as I use here, finds

that female teachers have a negative impact on female students in math, and no impact

elsewhere. They offer suggestive evidence that the underlying mechanism is math anxiety

among female teachers.

The mechanisms underlying student/teacher gender or race dynamics remain an area

of ongoing research. One of the most commonly proposed theories is that teachers serve

as role models for demographically similar students (Hess and L. Leal, 1997), potentially

increasing student motivation and ambition (Maria Villegas et al., 2012), or reducing the
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effect of stereotype threat4 (Steele, 1997; Beilock et al., 2010). An alternative theory is that

demographic dynamics affect teacher expectations of students, and that these expectations

have material influence on relevant student outcomes. Prior research has found that teacher

expectations are influenced by demographic matching (Ouazad and Page, 2012; Ouazad,

2014; Gershenson et al., 2016). The impact of teacher expectations on students appears to

be largely uncontroversial, but Mechtenberg (2009) develops a model of cheap-talk grading

that generates the same kind of achievement gaps observed empirically.

Finally, it could be that teachers are less likely to exhibit biases against demographically

similar students, either directly through biased grading behavior (Terrier, 2016; Lavy, 2008;

Lavy and Sand, 2018) or through moderated responses to student misbehavior (Downey

and Pribesh, 2004; Holt and Gershenson, 2017).

Ouazad and Page (2012) offers suggestive evidence that the effect of teacher gender

on students may depend on the students as well. In an experiment designed to elicit

student beliefs about teacher biases, they found that male students correctly expected

female teachers to be biased against them, while female students incorrectly expected male

teachers to be biased in their own favor.

Pinning down the active mechanisms is a significant empirical challenge. The data

necessary to distinguish between different mechanisms is difficult to acquire. For instance,

determining whether teachers demonstrate biases in grading behavior requires access to

both teacher grades and anonymous grades, as in Lavy (2008), Terrier (2016), or Lavy and

Sand (2018). Carlana (2019) uses the Gender-Science Implicit Association Test to measure

teacher biases directly, and finds that biased teachers increase the gender gap in math

performance in their classes. Bassi et al. (2018), using video of teachers in Chilean schools,

finds that teachers pay more attention to, and interact more favorably with, boys than with

girls. This ‘attention gap’ is correlated with the gender gap in math scores in Chile.

4Stereotype threat posits that when an individual feels that they run the risk of confirming stereotypes
about their social group, they become more anxious about their performance, and this may hinder their
performance at a particular task.
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3.3 Data

3.3.1 The National Evaluation of Teach for America

The data comes from the Mathematica Policy Research, Inc (MPR) National Evaluation

of Teach for America (NETFA) Public Use File5. The NETFA was a field experiment

conducted in elementary schools from six regions of the United States between 2001 and

2003. The full study consists of a pilot study, conducted in Baltimore during the 2001-2002

academic year, and a follow-up full-scale study conducted in Chicago, Los Angeles, Houston,

New Orleans, and the Mississippi Delta during the 2002-2003 academic year. In total, 17

schools containing 98 classes and 1,938 students took part in the experiment.

In each region, schools that had at least one TFA teacher and at least one non-TFA

teacher assigned to teach a class in the same grade were considered ‘eligible’ for the experi-

ment. From the pool of eligible school-grade combinations, MPR selected a random sample

to form an experimental group that was representative of the schools where TFA teachers

tended to teach at the time6. If a school-grade combination was selected for inclusion in the

experiment, students entering that school and grade were randomly assigned to the teachers

allocated to that school and grade. Throughout the experimental year, MPR performed

roster checks to enforce original classroom assignments.

After the random assignment to classrooms, students in experimental classrooms took

math and reading tests based on the last school grade they had completed, which I will

refer to as pre-treatment tests. At the end of the school year, students again took math and

reading tests based on the school grade they had just completed. For the vast majority of

the students in the sample, the pre- and post-treatment tests were the grade-appropriate

Iowa Test of Basic Skills (ITBS). A small group of students took their tests in Spanish -

for these students, the test was the Logramos test. Both tests are published by the same

organization (Riverside Publishing), but are normed relative to different groups.

5https://www.mathematica-mpr.com/-/media/publications/data-sets/2017/tfapublicuse.zip
6The Teach for America program has expanded significantly since the experiment. The sample is likely

not representative of ‘TFA schools’ today.
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The original purpose of the NETFA experiment was to evaluate the effectiveness of the

Teach for America program. As a result, the sample is not representative of the U.S. school

population - it is representative of the schools that usually participate in the TFA program.

While this prevents my results from generalizing to the broader school population, the stu-

dents served by these schools are a subset of the student population on which policymakers

have focused in the past.

3.3.2 Sample Statistics

The NETFA data includes detailed information on student and teacher characteris-

tics. For students, it includes class type (bilingual/monolingual), student demographic

characteristics, class size, and math/reading scores both before and after treatment. For

teachers, it includes demographic characteristics, type of teacher certification (nontradi-

tional/traditional), and years of experience7. In addition to the baseline data, I construct

a classroom-level indicator variable for the presence of at least one disruptive student8.

The test score variables deserve some further discussion. The data does not contain tra-

ditional test scores. Instead, there are raw counts for number of correctly answered questions

and number of questions attempted, and a battery of transformed scores. The transformed

scores include standardized score, grade equivalent, national percentile rank, and normal

curve equivalent scores. For my investigation, I use normal curve equivalent scores as both

pre-treatment conditioning and post-treatment outcome variables. The primary reason for

this choice is that normal curve equivalent scores have the same equal-interval property

that a z-score does. This is critical for estimation techniques that average outcomes.

7Seven classrooms experienced teacher turnover during the experimental year. Following Antecol et al.
(2015), I code the teacher as being the first teacher without missing data. In all but one case, this is
equivalent to the longest-serving teacher.

8I use disciplinary data to proxy for this. Specifically, if a class contained at least one student who was
suspended or expelled during the course of the school year, I code that classroom as having been disrupted.
Some classes contained students that are not part of the research sample, so some classes may be incorrectly
coded as not disrupted.
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Normal curve equivalent (NCE) scores are defined NCE = 50 + 21.063 ∗ ss where ss is

the standard z-score. The choice of 21.063 as the multiplier ensures that, if the underlying

standard scores are normally distributed, then a percentile rank of 1, 50, or 99 corresponds

to a normal curve equivalent score of 1, 50, or 99 respectively. Close to 50, normal curve

equivalent scores change more slowly than percentile ranks, while close to 1 or 99, they

change more rapidly9.

Some students in the sample have raw scores of 99. These scores are invalid - the

highest possible raw score in the sample is 44 in reading and 50 in math (Penner, 2016).

Approximately 19 (21) percent of the initial math (reading) sample is lost due to students

with missing or invalid data. This is a slightly larger loss than Antecol et al. (2015) because

they retained invalid test scores in their main specification10.

Table 3.1 reports summary statistics for the variables of interest. Note that the math

estimation sample and the reading estimation sample are not identical. In general, this

is because students who recorded an invalid test score in math or reading did not always

record an invalid test score in both subjects. In the interests of dropping as little data as

possible, I retain students with invalid test scores in the ‘wrong’ subject when estimating

the CATE for math or reading outcomes.

Table 3.2 reports the results of tests for mean differences between the full sample and

the two estimation samples. I find very similar results to Antecol et al. (2015) in these tests.

Sample attrition appears to be largely at random.

While there are some significant differences in means between the full and estimation

samples, most are quantitatively small. The only exceptions are in pre-treatment math and

reading scores - and this is entirely due to the removal of invalid test scores11.

9If the underlying test scores are normally distributed, a percentile rank between 89 and 95 will be
transformed into a normal curve equivalent between 75.8 and 84.6. A percentile rank between 40 and 59
will be transformed into a normal curve equivalent between 44.7 and 54.8.

10In a supplementary specification, Antecol et al. (2015) removed the invalid scores and did not see a large
change in their results.

11Invalid raw scores of 99 were coded as normal curve equivalent scores of 0. Thus, removal of invalid
scores will mechanically drive mean pre-treatment test scores up. The full-sample mean pre-treatment scores
after removing invalid scores are essentially identical to the estimation sample means.
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Contrasting the estimation samples with only those students who have invalid test scores

tells a somewhat different story. Black students are slightly more likely than average to have

recorded an invalid math score, while being slightly less likely to record an invalid reading

score. Hispanic students display the reverse pattern - they are slightly more likely to record

an invalid reading score, and less likely to record an invalid math score. Finally, there is a

statistically significant difference in the mean class size between the math estimation sample

and the sample of students with invalid math scores. This is likely because larger classes

have more chances to draw an invalid score, rather than there being a causal relationship

between class size and invalid scores.

Since I will be estimating treatment effects conditional on pre-treatment test scores, it is

worth looking at the distribution of those scores in the data. Figure 3.1 presents histograms

of the pre-treatment math and reading scores across the relevant estimation samples. The

red dashed line indicates the 90th quantile of the pre-treatment test score distribution for

each sample.

Figure 3.1 Pre-Treatment Test Score Distribution

Since I will be estimating treatment effects conditional on pre-treatment test scores, the

relative lack of data in the upper half of the pre-treatment test score distribution has a

direct impact on the variance of my estimates.
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3.4 Estimation Strategy

Capturing the heterogeneity of a treatment effect has traditionally been done through

the estimation of quantile treatment effects (QTEs), which describe the difference between

quantiles of the outcome distribution for untreated and treated individuals. QTE esti-

mation, however, allows for heterogeneity in the treatment effect across sub-populations

that are not identifiable given covariates. For example, the QTE of assignment to a female

teacher might be positive for students in the 60th quantile, negative for students in the 40th

quantile, and zero for those in the 50th quantile - but it may not be possible to determine

a priori whether a particular student was in any of those quantiles. In the context of my

investigation, this is undesirable - I am interested in how the treatment effect of assignment

to a female teacher changes with specific covariates (gender and pre-treatment test scores).

Thus, instead of the QTE, I estimate the Conditional Average Treatment Effect (CATE)

function. The CATE is defined as the value of the Average Treatment Effect (ATE) within

a sub-population defined by specific covariate values. While the CATE is not an entirely

new parameter, often appearing as an intermediate estimand for ATE estimation (Heckman

et al., 1997; Hahn, 1998), treatment of the CATE as a parameter of interest is relatively

recent.

The chief difficulty in identifying the CATE is that unconfoundedness probably does not

hold when conditioning on a strict subset of the available covariates. In the context of this

investigation, it is unlikely that unconfoundedness holds conditional on only student gender

and pre-treatment test scores. Abrevaya et al. (2015) provides a semi-parametric estimation

procedure that accounts for this issue and allows for consistent estimation of the CATE

parameter when conditioning on a subset of the covariates for which unconfoundedness

does not hold.

I implement the Abrevaya et al. (2015) estimator and estimate the CATE of assignment

to a female teacher. I condition on pre-treatment test scores after splitting the sample by

student gender, recovering the CATE conditional on both covariates.
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3.4.1 The Abrevaya et al. (2015) CATE Estimator

For compactness of notation, let Yi be the post-treatment test score for student i, Xi

be a vector of control covariates, and Di be a binary indicator for the gender of student i’s

teacher (Di = 1 if i was assigned to a female teacher, Di = 0 otherwise). Let X1i be a strict

subset of Xi, containing only i’s pre-treatment test score and an indicator for i’s gender.

Formally, the CATE is defined as

τ(x1) = E [Yi(1)− Yi(0) | X1 = x1] (3.1)

This parameter captures how the average treatment effect E [Yi(1)− Yi(0)] depends on the

covariates contained in X1 - in this context, how the effect of assignment to a female

teacher changes with student gender and pre-treatment test scores. The Abrevaya et al.

(2015) estimator of the CATE is

τ̂(x1) =

1
nhl

∑n
i=1

(
DiYi
p̂(Xi)

− (1−Di)Yi
1−p̂(Xi)

)
K1

(
X1i−x1
h1

)
1
nhl

∑n
i=1K1

(
X1i−x1
h1

) (3.2)

where K1(·) and h1 are respectively a kernel function and a bandwidth, l is the dimension

of the vector X1 (in this case, l = 1 because I condition on gender by splitting the sample,

leaving only pre-treatment test score in X1), and p̂(Xi) is an estimate of the propensity

score12. Subject to mild regularity conditions on the first-stage propensity score estima-

tion, Abrevaya et al. (2015) show that this estimator is asymptotically consistent for the

CATE under the familiar unconfoundedness and sampling assumptions necessary for ATE

estimation.

3.4.2 Identification Strategy

Intuitively, the identifying assumptions require that students who are assigned to a

female teacher are comparable to students assigned to male teachers, conditional on pre-

12Abrevaya et al. (2015) considers both parametric and nonparametric estimation of the propensity score,
and provides consistency results for both cases. While the nonparametric approach offers potential efficiency
gains, it requires complicated transformations of discrete variables. In addition, it quickly runs into the curse
of dimensionality when the set of covariates is of high dimension. As a result, I estimate the propensity
score parametrically.
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treatment test scores, student gender, and other covariates. If, for instance, students in one

region had much stronger gender stereotypes and were also more likely to be assigned to a

female teacher, unconfoundedness would likely fail. Without controlling for region effects

in the estimation, the estimated effect of assignment to a female teacher would be biased

downwards.

A major upside of the data used is that conditional on randomization block, students

were assigned to teachers totally at random. This means that a number of potential con-

founders, like better students being assigned to female teachers13, are not concerns. How-

ever, since the randomization is not unconditional, some potential sources of confounding

remain. In particular, while students were randomly assigned to teachers, teachers were

not randomly assigned to preparation pathways (i.e. TFA and non-TFA teachers are likely

to be different), nor were they randomly assigned to schools or grades (i.e. it may be that

teachers in one school are different from those in another school).

For TFA teachers, dealing with these issues is straightforward. TFA applicants in the

experiment provided regional preferences, which allows for teachers to differ across regions,

but not across schools within a region14.

For non-TFA teachers, non-random assignment of teachers to schools or grades poses

a more difficult problem. It is certainly possible that non-TFA teachers could select into

different schools (or even grades) within a region, which would not be adequately controlled

by a region indicator. However, it is hard to see why teachers would select differentially into

schools within the population from which the sample was drawn. While teachers almost

certainly select into or out of high-poverty schools, it is less clear that they select into

different schools within the population of high-poverty schools - outside of simple geographic

reasons, which are adequately controlled for by region indicators.

13Clotfelter et al. (2006) finds that male teachers are more likely to be assigned students with lower math
and reading scores, so this would be a real concern with purely observational data.

14To be more specific, TFA applicants reported regional preferences as well as preferences for level of
education (e.g. primary/middle/high school levels). Since the experiment considers only primary school
students, the latter preferences cannot introduce confounding. I thank the TFA administrators for a thorough
explanation of the application process at the time of the experiment.
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This would seem to suggest that the propensity score should be estimated as a function

of region indicators (and perhaps school/grade indicators). However, this goes too far

towards treating the data as coming from a perfectly randomized experiment. Notably,

some schools in the sample have no male teachers - using school indicators when estimating

the propensity score would result in students from those schools having estimated propensity

scores of either 0 or 1, which is far from credible. Even if there is differential selection of

teachers into schools, it is very difficult to see how it could produce certain schools that

would never have male teachers. The existence of schools with only female teachers is far

more likely to be a result of the relative proportion of female primary school teachers in

general, rather than evidence of a strong selection mechanism that eliminates male teachers

entirely from some schools.

Additionally, for the purpose of estimating treatment effects, the goal of the propen-

sity score estimation step is “to obtain estimates of the propensity score that balance the

covariates between treated and control samples” (Imbens and Rubin, 2015). In finite sam-

ples15 it is thus important to include not only covariates that potentially explain treatment

assignment, but covariates that explain the outcome of interest - even if they are known

not to play a role in treatment assignment. I thus estimate the propensity score with the

following logistic regression:

ln
P (FTEACHi = 1)

1− P (FTEACHi = 1)
= β0 + β1SC

′
i + β2TC

′
i + β3R

′
i + β4TFAi + β5CSi + ui (3.3)

where FTEACHi is an indicator for assignment to a female teacher, SC
′

is a vector of

student covariates, TC
′

is a vector of teacher characteristics, R
′

is a vector of region dummy

variables, TFA is an indicator for whether the teacher was a TFA teacher or not, and CSi

is the size of student i’s class. Full details of this specification can be found in chapter A3,

where I also consider some alternative specifications for the propensity score.

15With a sufficiently large sample, correctly specifying the propensity score model suffices to achieve
covariate balance. However, in any finite sample, even one from a perfectly randomized experiment, there
is no guarantee that weighting by the true propensity score will balance important covariates.



www.manaraa.com

46

One potential issue facing any investigation that uses inverse probability weighting is

the effect of very large or very small propensity scores. It is clear from equation (2) that if

p̂(Xi) is very close to 0 (1) for treated (untreated) students, the importance of the outcomes

for those students will be inflated significantly by the weighting procedure. Weights such as

these lead to highly variable estimates, and may indicate a failure of the overlap condition.

In the above specification, this is not a significant issue. To deal with the minority of

students with extreme propensity scores, I set propensity scores above 0.95 (below 0.05) to

0.95 (0.05). The main specification is robust to different trimming behavior - in particular,

dropping students with extreme propensity scores instead of changing their propensity scores

does not have a noticeable effect on the results. One alternative specification, discussed in

chapter A3, depends more strongly on trimming behavior.

3.4.3 Choice of Smoothing Parameters

The IPW-based estimator in (3.2) requires the choice of two smoothing parameters -

the kernel and the bandwidth. Following Abrevaya et al. (2015), I set bandwidth to be

a multiple of the sample standard deviation in the conditioning covariate (pre-treatment

test score). In my main specification, the bandwidth is set to be half the sample standard

deviation (approximately 9 for male students in math, for example). I use a Gaussian

kernel:

Kg(u) =
1√
2π
e−

1
2
u2 (3.4)

In chapter A3, I report results for different bandwidths and kernels. As is often the case with

kernel-based local averaging, bandwidth choice strongly influences the resulting estimates,

while kernel choice generally does not have a strong effect. Smaller bandwidths produce

more variable CATE estimates, which are often non-monotonic and can have extreme ranges.

Larger bandwidths produce flatter CATE estimates, and mechanically force the estimated

CATE function towards monotonicity. As bandwidth increases, the CATE estimator quickly

becomes uninformative as to heterogeneity, essentially recovering an estimate of the ATE.
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While overfitting is a valid concern, my main goal is not to provide another estimate of

the average effect of teacher gender. Heterogeneity in that effect is my primary concern, and

I thus err on the side of choosing a bandwidth that is too small for my main specification.

3.5 Results

3.5.1 Conditioning on Pre-Treatment Test Score

Figure 3.2 depicts the estimated CATE function for female students. Post-treatment

math test scores are the outcome of interest, and the conditioning covariate is the student’s

pre-treatment normal curve equivalent test score in math. Pointwise valid confidence inter-

vals are constructed using the asymptotic approximations from Abrevaya et al. (2015)16.

As one would expect, given the distribution of pre-treatment test scores in the sample (Fig-

Figure 3.2 CATE (Math) for female students

16To the best of my knowledge, construction of uniformly valid confidence intervals for the Abrevaya et al.
(2015) estimator is an open problem.
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ure 3.1), the size of the confidence intervals grows rapidly once the pre-test score exceeds

approximately 50, due to lack of data. Notably, the confidence interval for a pre-test score

of 1 is relatively small, despite being a boundary point. This is largely due to the significant

mass of students scoring 1 on the pre-test (also seen in Figure 3.1).

For the majority of students in this sample, I cannot reject the hypothesis that the true

effect of being assigned a female teacher is zero. Indeed, while the confidence intervals here

are pointwise valid, it is likely that uniformly valid confidence bands would be wider, and

might not reject the hypothesis that the true effect of assignment to a female teacher is a

constant zero across the pre-treatment test score distribution.

Qualitatively, while the majority of the point estimates are insignificant, the confidence

intervals themselves suggest that if the true effect is not zero, female students at the very

bottom of the ability distribution in math see less benefit from assignment to a female

teacher than female students of higher ability. Outside of the very bottom of the ability

distribution, there does not appear to be much, if any, heterogeneity in the effect of teacher

gender on math test scores for female students. My results are reasonably consistent with

the true CATE having a monotonic relationship between pre-test scores and the treatment

effect. Indeed, particularly for TFA teachers, a possible conjecture is that students with

higher ability are easier to teach effectively17.

The implied average treatment effect18 is around 0.25 standard deviations, or 4.5 points

on the normal curve equivalent scale. While this is quite high, especially in comparison to

Antecol et al. (2015), note that formally assessing the statistical significance of the implied

ATE remains an open question. In light of the confidence intervals and the size of the implied

ATE, it seems unlikely that the implied ATE would be statistically significant19. Restraining

17Since TFA is a highly selective program and primarily accepts the highest-achieving applicants, it is
likely that those applicants were high-achievement students in primary school as well. Since they receive
a relatively small amount of accelerated training in teaching, they may have an easier time understanding
the difficulties faced by high-achieving students in their classrooms while struggling to understand those
difficulties faced by the lowest ability students.

18The implied ATE is calculating by taking a weighted average of the CATE point estimates, where the
weight on τ̂(x1) is equal the proportion of the sample with X1 = x1. It is the point estimate of the average
treatment effect we would expect to see if the CATE point estimates are correct.

19I performed a standard non-parametric bootstrap for the implied ATE, and subject to the caveat that



www.manaraa.com

49

the calculation to consider only point estimates below 55, thus excluding potentially extreme

point estimates driven by lack of data, the implied ATE decreases to around 0.19 standard

deviations (3.4 on the normal curve scale).

Figure 3.3 depicts the estimated CATE function for male students, again with math

scores as the outcome of interest and conditioning covariate. The increase in the size of the

confidence intervals starts earlier than in Figure 3.2, primarily because the male pre-test

score distribution is skewed to the left relative to the full sample, which is in line with male

students generally performing worse than female students in school. In addition, since no

male in the sample scored higher than 92 on the pre-test, CATE estimates for pre-treatment

test scores above 92 cannot be constructed.

Figure 3.3 CATE (Math) for male students

In contrast to Figure 3.2, for the majority of the students in this sample the effect of

assignment to a female teacher is at least marginally significant and positive. This is in

such a procedure is not currently known to be valid, the bootstrap results support this claim.
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stark contrast to what one would expect if female teachers were biased against low-ability

male students. If anything, my results so far would be consistent with a bias in the opposite

direction - against low-performing or low-ability female students.

The implied ATE is approximately 0.25 standard deviations (4.7 on the normal curve

scale). Considering only pre-test scores below 55 raises the implied ATE significantly to

0.33 standard deviations (6.0 on the normal curve scale). As before, it seems unlikely that

the implied ATE would be statistically significant. Using the same rough rule of thumb

that uniformly valid confidence bands would be larger, it is also unlikely that I would be

able to reject the hypothesis that the true effect was a constant zero.

It is notable that, discounting the extreme point estimates arising from lack of data at

the very top of the pre-treatment test score distribution, there is essentially no evidence of

heterogeneity in the effect of teacher gender on male students. A male who scored 1 on the

pre-test has nearly the same estimated CATE as one who recorded a score between 2 and

55. The only change is an increase in the size of the confidence intervals, which may be

entirely due to the decrease in available data as test scores increase. The size of the positive

effect is roughly the same as for female students in the middle of the pre-treatment test

score distribution.

Figures 3.4 and 3.5 depict the estimated CATE functions for female and male students,

respectively, with reading test scores as the outcome of interest and conditioning covariate.

The first-stage propensity score model is the same as before except for the change from

math to reading test score variables. For female students, there is noticeably

more heterogeneity in the estimated CATE function, and it is no longer consistent with

a monotonic relationship between treatment effects and pre-treatment test scores. The

implied ATE is around 0.09 standard deviations (1.7 on the normal curve scale). A much

smaller effect on reading than in math is consistent with previous literature studying the

effect of teacher gender. Restricting attention to pre-test scores below 55 has almost no

impact on the implied ATE. In contrast to previous literature suggesting that effects on
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Figure 3.4 CATE (Reading) for female students

reading are non-existent, I find that female students with pre-treatment test scores in the

middle of the distribution see a significant and large positive treatment effect.

For male students, the story appears largely the same as before. There is limited het-

erogeneity (although potentially more than in math). The estimated CATE is positive for

almost all pre-treatment test scores below 55, as before, and the change in the CATE within

that range is limited. As was the case with math results, the implied ATE for male students

is relatively large - approximately 0.31 standard deviations (5.5 on the normal curve scale)

for the full sample, and around 0.29 standard deviations (5.2) for students scoring less than

55 on the pre-test. Again, it is unlikely that the implied ATE is statistically significant.

3.5.2 Conditioning on Class Rank

To this point, I have been agnostic as to what might drive heterogeneity in the effect of

teacher gender. Most of the standard mechanisms for teacher gender effects could plausibly
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Figure 3.5 CATE (Reading) for male students

include heterogeneity on ability. Role model effects, for instance, might be stronger for

high-ability students, or stereotype threat effects on women in math may be more powerful

at the low end of the ability distribution. However, it is also possible that teacher behavior

differs for students of different perceived ability - e.g. teachers may invest different amounts

of effort in students they perceive as struggling or excelling.

Perceived ability may not closely track ‘objective’ ability as measured by pre-treatment

test scores, or it may be that teachers care more about the ability of a student relative

to the rest of the class, rather than relative to a national norm group. To investigate this

possibility, I estimate the CATE functions as before, but replace the pre-treatment test score

with a class rank variable constructed from the data20. Figure 3.6 presents the estimated

CATE functions conditional on class rank for the four subsamples.

20Unfortunately, since some classes contain students not in the research sample, the accuracy of this
variable is likely imperfect. If there is a correlation between student ability and whether a student was in
the research sample, identification of the CATE may fail for this specification.
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Figure 3.6 Conditioning on Class Rank

The class rank variable is scaled into a ‘percentile’ rank, with 0 being the worst student

in the class and higher values reflecting higher within-class rankings, so the interpretation of

the graphs is similar to before - and the results suggest that within-class performance is not

correlated with the size of the teacher gender effect. Even with point-wise valid confidence

bands, the hypothesis that the true effect conditional on class rank is a constant zero cannot

be rejected in any sub-sample at the 95% level.

3.6 Discussion

Somewhat surprisingly, the overriding takeaway from this investigation is that there is

very little heterogeneity in the effect of teacher gender on students of different levels of

ability. Assignment to a female teacher is either neutral or positive for all students, and the
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heterogeneity is largely confined to the different effects for male and female students. In

math, male students see a uniformly positive effect from assignment to a female teacher, as

do female students outside of the very bottom of the pre-treatment test score distribution.

In reading, I find that students of either gender with pre-treatment test scores that are

average compared to the national norm see positive effects from assignment to a female

teacher, and the remainder of students see no significant effect.

The presence of significant effects on reading is surprising in light of the existing lit-

erature. It may be that, for relatively well prepared students, female teachers are more

effective in teaching reading because they have internalized stereotypes labeling reading as

an area where women are better. It may also be the students who have internalized such a

stereotype, and exert more effort or are more engaged in reading when taught by a woman.

Differential teacher behavior could also explain why I find a positive effect on male

students in math, but no significant effect for female students. Female teachers who view

math as a ‘male’ subject might view low achievement from a male student as a sign that help

is needed, while viewing low achievement in math from a female student as being expected.

Unlike with the reading effects, it is difficult to see how traditional gender stereotypes about

math might drive male students to be more engaged when taught by women.

In terms of policy implications, the most important implication is that male students

benefit from assignment to female teachers, while female students appear largely unaffected.

Primary school teaching is already an occupation dominated by women, and my results

suggest that, if anything, this has benefited male students.

Since classes are generally not split by gender, consideration of teacher gender when

assigning teachers to classes is unlikely to generate benefits overall. That said, Clotfelter

et al. (2006) finds that male teachers are more likely to be assigned to classes with lower

average math and reading scores. This kind of sorting is likely to have a negative overall

effect on student achievement - while the very worst-performing female students might

benefit from assignment to a male teacher, my results suggest that male students will
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be harmed, and female students with higher scores may also be harmed relative to being

assigned a female teacher. If anything, my results suggest that, all else equal, women should

be preferred when seeking a teacher for a classroom of low-achieving students.

In terms of average effects, my results differ from those of Antecol et al. (2015), who

find a negative association between assignment to a female teacher and a female student’s

test scores in math. Partially, this is due to consideration of different parameters. Antecol

et al. (2015) consider estimates of what can be thought of as the effect of being a female

student, and how that changes with teacher gender. In their specification, the estimated

effect of being assigned to a female teacher is insignificant at conventional levels for all

students, which is at least somewhat consistent with my results. More generally, the relative

treatment effects for male and female students display the same relationship - males benefit

more (or are harmed less) by assignment to a female teacher. Antecol et al. (2015) also

provide suggestive evidence that the mechanism underlying their results is powered by

stereotype threat, which falls in line with the hypothesis of differential teacher behavior

proposed above.

As my sample is not representative of the U.S. student and teacher populations, it is

possible that my results are driven by the difference between the population of disadvantaged

schools and the broader U.S. school population. It is plausible, for instance, that teachers

working in the most disadvantaged schools are less likely to be biased against (or more aware

of their potential biases against) low-ability students. They may receive specialized training

to help them effectively teach low-ability students that a teacher in a less disadvantaged

school would not receive. The level of schooling may also play a role, as my sample consists

entirely of primary school students between first and fifth grade. This may be too early

for gender stereotypes to strongly affect gender dynamics between students and teachers,

although Antecol et al. (2015) suggests otherwise. Different levels of schooling, and a sample

more representative of the U.S. school population overall, provide exciting avenues to extend

this research.
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3.7 Conclusion

I estimate the Conditional Average Treatment Effect of assignment to a female teacher

on students of different abilities, using data from the National Evaluation of Teach for Amer-

ica, a field experiment run between 2001 and 2003. I find little evidence of heterogeneity

across students of different abilities, and a small degree of heterogeneity across students of

different genders. Male students see a uniformly positive but marginally significant effect

from being assigned to a female teacher in math, while female students see effects that are

generally insignificant. In reading, students that are average relative to the national norm

group see positive and significant effects from assignment to a female teacher, while the

remainder of students see insignificant effects.

Overall, my results suggest that teacher gender effects in math do not significantly

change with student ability, with what little heterogeneity there is being primarily on the

gender axis. In reading, there is some evidence of heterogeneity along the ability axis, but

much less difference between students of different genders. My results are most consistent

with teachers internalizing traditional gender stereotypes regarding math and reading, and

not at all consistent with the bias found in Cappelen et al. (2019).
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Table 3.2 Mean Differences between Full and Estimation Samples

Full vs Math Estimation Full vs Reading Estimation

Student Characteristics

Female -0.003 -0.007

Black 0.015 −0.026∗

Hispanic −0.023∗ 0.021†

Class Size 0.233 −0.096†

Pre-Treatment Math −1.579∗ 0.248

Pre-Treatment Reading −0.720 −1.122∗

Disrupted Class −0.014 −0.024†

Teacher Characteristics

Female −0.005 0.005

Black 0.018 −0.008

Hispanic −0.001 0.010

TFA 0.006 −0.007

Certification −0.024† 0.009

Experience −0.024∗ 0.238

* denotes significance at the 5% level

† denotes significance at the 10% level
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APPENDIX A. ADDITIONAL MATERIAL FOR CHAPTER 1

Proof of Bootstrap Failure

Recall that

Var
(√

N1

(
τ̂ t∗ − τ̂ t

)
| Z
)

= N1E
[
(T t∗N )2 + (Qt∗N )2 + (Rt∗N )2 | Z

]
+N1E

[
2
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T t∗NQ

t∗
N + T t∗N R

t∗
N +Qt∗NR

t∗
N

)
| Z
]

(A.1)

Consider each part of the above separately. First,

E
[
N1(T

t∗
N )2 | Z

]
=

1

N1

N∑
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Di

(
µ(1, Xi)− µ(0, Xi)− τ t

)
=

1

N1

∑
i:Di=1

(
µ(1, Xi)− µ(0, Xi)− τ t

)
→p (σt2)

2 by the Law of Large Numbers (A.2)

Second, consider Qt∗N . Let ei = Yi−µ(Di, Xi). Recalling that m(i) returns the index of the

single match to unit i,
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where the final step follows because the idiosyncratic errors ei are by definition independent

of each other, and independent of µ(d, x) functions. Now, decompose into

E
[
N1(Q

t∗
N )2 | Z

]
= E

 1

N1

∑
i:Di=1

(
e2i + e2m(i)

)
| Z

+QRN (A.4)

where

QRN = E
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µ(0, Xm(i))

2 + µ(0, Xi)
2 − 2µ(0, Xi)µ(0, Xm(i))

)
| Z

 (A.5)

First, dealing with (25), we need to convert the sum to cover the entire sample. To do so,

note that for control unit j, ej will show up once for each time j ∈ JM(i). By the definition

of Ki, this happens Ki times. Thus,

E

 1

N1

∑
i:Di=1

(
e2i + e2m(i)

)
| Z

 =
1

N1

N∑
i=1

(Di + (1−Di)Ki)E
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e2i | Z

]
→p 1
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(Di + (1−Di)Ki)σ
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RegardingQRN , note that since µ(0, Xi)−µ(0, Xm(i)) is op(N
−1/2) it must be that µ(0, Xm(i))−

µ(0, Xi) is also op(N
−1/2), so both terms in QRN are op(N

−1/2), and thus QRN →p 0.

Finally, for Rt∗N , note first that E
[
Rt∗N | Z

]
= 0. Thus,
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Finally, consider the cross product terms. First, T t∗N R
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N :
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Since τ̂ t →p τ t, it follows immediately that
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It is straightforward to verity that Qt∗NR
t∗
N →p 0. The proof is nearly identical. Finally,

consider T t∗Qt∗N ,
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(A.9)

Recalling that Yi(1) = µ(1, Xi) + ei and making the substitution, a number of terms cancel,

leaving
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Similarly, recall that Ŷi(0) = Ym(i) = µ(0, Xm(i)) + em(i), and make the substitution.
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Note that when I take probability limits, every term involving ei or em(i) goes to zero, so I

will remove them now for convenience.
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[
µ(0, Xi)− µ(0, Xm(i)
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[
µ(0, Xi)− µ(0, Xm(i)

]
−τ t

[
µ(0, Xi)− µ(0, Xm(i)

])
(A.12)

Since µ(0, Xi)− µ(0, Xm(i)) is op(N
−1/2) when bias correction is unnecessary (Abadie and

Imbens, 2006), T t∗NQt∗N →p 0.
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ATC Simulations

The proposed bootstrap trivially works when estimating the ATC using the Abadie and

Imbens (2008) DGP, as shown in Figure A.1.

Figure A.1 Proposed and Synthetically Corrected Bootstrap (ATC)

The small differences between the proposed and synthetically corrected bootstrap re-

sult from rounding errors when simulating the two procedures. Intuitively, the reason the

procedure works in this case is that ei = Yi − µ(Di, Xi) is uniformly 0 for all treated units,

since Yi(1) has a degenerate distribution. Thus, the value of σ2(1, Xi) is universally 0, so it

does not matter that the bootstrap incorrectly weights σ2(1, Xi).
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APPENDIX B. ADDITIONAL MATERIAL FOR CHAPTER 2

Proofs

Proof of Theorem 1

Recall that we seek to solve,

min
ki

E

µ(XD1 , 0)−
∑
Di=0

kiYi

2 (B.1)

It is convenient to assume, without loss of generality, that the N0 control units are indexed

by i = 1, ..., N0 and the N1 treated units by i = N0 + 1, ..., N . Thus, in particular,
∑N0

i=1 is

equivalent to
∑

Di=0. Expanding the square above results in,

min
ki

E

( N0∑
i=1

kiYi

)2

− 2µ(XD1 , 0)

N0∑
i=1

kiYi + µ(XD1 , 0)
2

 (B.2)

First, consider the leading squared sum:(
N0∑
i=1

kiYi

)2

=

N0∑
i=1

k2i Y
2
i +

N0∑
i=1

∑
j 6=i

kikjYiYj

=

N0∑
i=1

k2i (µ(Xi, 0) + εi)
2 +

N0∑
i=1

∑
j 6=i

kikj (µ(Xi, 0) + εi) (µ(Xj , 0) + εj) (B.3)

Since εi is mean-zero and independent of εj , after taking expectations the minimization

problem becomes,

min
ki

 N0∑
i=1

k2i
(
µ(Xi, 0)2 + σ2i

)
+

N0∑
i=1

∑
j 6=i

kikjµ(Xi, 0)µ(Xj , 0)

−2µ(XD1 , 0)

N0∑
i=1

kiµ(Xi, 0) + µ(XD1 , 0)
2

]
(B.4)
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And the solution can be found by solving a system of N0 first order conditions:

2ki
(
µ(Xi, 0)2 + σ2i

)
+ 2µ(Xi, 0)

∑
j 6=i

kjµ(Xj , 0)− 2µ(Xi, 0)µ(XD1 , 0) = 0 (B.5)

Adopting the convention that a subscript of −i refers to all indices except i, we can re-

arrange to arrive at,

ki (k−i) =
µ(XD1 , 0)µ(Xi, 0)− µ(Xi, 0)

∑
j 6=i kjµ(Xj , 0)

µ(Xi, 0)2 + σ2i
(B.6)

Plug this into the first order condition for some l 6= i, to find,

kl
(
µ(Xl, 0)2 + σ2l

)
= µ(XD1 , 0)µ(Xl, 0)−

µ(Xl, 0)
∑
t6=l,i

ktµ(Xt, 0)


− µ(Xl, 0)µ(Xi, 0)

µ(XD1 , 0)µ(Xi, 0)− µ(Xi, 0)
∑

j 6=i kjµ(Xj , 0)

µ(Xi, 0)2 + σ2i

(B.7)

Note that the index j 6= i includes l, and thus:

kl
(
µ(Xl, 0)2 + σ2l

)
= µ(XD1 , 0)µ(Xl, 0)− µ(Xl, 0)

∑
t6=l,i

ktµ(Xt, 0)

+
µ(Xi, 0)2µ(Xl, 0)

µ(Xi, 0)2 + σ2i

∑
j 6=l,i

kjµ(Xj , 0)

− µ(XD1 , 0)µ(Xi, 0)2µ(Xl, 0)

µ(Xi, 0)2 + σ2i
+
µ(Xi, 0)2µ(Xl, 0)2kl
µ(Xi, 0)2 + σ2i

(B.8)

Since t 6= l, i and j 6= l, i describe the same set, this simplifies to,

kl
(
µ(Xl, 0)2 + σ2l

)
= µ(XD1 , 0)µ(Xl, 0)− µ(Xl, 0)σ2i

µ(Xi, 0)2 + σ2i

∑
j 6=l,i

kjµ(Xj , 0)

− µ(XD1 , 0)µ(Xi, 0)2µ(Xl, 0)

µ(Xi, 0)2 + σ2i
+
µ(Xi, 0)2µ(Xl, 0)2kl
µ(Xi, 0)2 + σ2i

(B.9)

Bringing the right-hand side of the above over a common denominator and simplifying gives,

kl

(
µ(Xl, 0)2 + σ2l −

µ(Xi, 0)2µ(Xl, 0)2

µ(Xi, 0)2 + σ2i

)
=

µ(Xl, 0)σ2i
µ(Xi, 0)2 + σ2i

µ(XD1 , 0)−
∑
j 6=l,i

kjµ(Xj , 0)


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Doing the same to the left-hand side gives,

kl =
µ(Xl, 0)σ2i

µ(Xl, 0)2σ2i + µ(Xi, 0)2σ2l + σ2i σ
2
l

µ(XD1 , 0)−
∑
j 6=l,i

kjµ(Xj , 0)

 (B.10)

Which allows for a simplified relationship between ki and kj to be found:

kj = kj
Xj

Xi

σ2i
σ2j

(B.11)

Using this relationship delivers,

ki
(
µ(Xi, 0)2 + σ2i

)
= µ(XD1 , 0)µ(Xi, 0)− µ(Xi, 0)ki

σ2i
µ(Xi, 0)

∑
j 6=i

µ(Xj , 0)2

σ2j

ki

µ(Xi, 0)2 + σ2i + σ2i
∑
j 6=i

µ(Xj , 0)2

σ2j

 = µ(XD1 , 0)µ(Xi, 0) (B.12)

Noting that the common denominator on the left-hand side is
∏
j 6=i σ

2
j , this becomes,

ki

µ(Xi, 0)2 + σ2i + σ2i
∑
j 6=i

[
µ(Xj , 0)2

σ2j

∏
l 6=j,i σ

2
l∏

l 6=j,i σ
2
l

] = µ(XD1 , 0)µ(Xi, 0) (B.13)

Move the σ2i and σ2j terms into the appropriate product operators to produce,

ki

(
(µ(Xi, 0)2 + σ2i )

∏
l 6=i σ

2
l +

∑
j 6=i µ(Xj , 0)2

∏
l 6=j σ

2
l∏

l 6=i σ
2
l

)
= µ(XD1 , 0)µ(Xi, 0) (B.14)

Finally, note that in the numerator above, the first term can be moved into the summation,

ki = µ(XD1 , 0)µ(Xi, 0)

∏
j 6=i σ

2
j∑N0

i=1

(
µ(Xi, 0)2

∏
j 6=i σ

2
j

)
+
∏N0
i=1 σ

2
i

(B.15)

completing the proof.

Proof of Theorem 2

We seek to solve the same minimization problem, but subject to the constraints that

ki ≥ 0 for all i and
∑N0

i=1 ki = 1. The associated Lagrangian is,

L =

N0∑
i=1

k2i σ
2
i +

(
N0∑
i=1

kiYi

)2

+ µ(XD1 , 0)
2 − 2µ(XD1 , 0)

N0∑
i=1

kiYi − λ

(
N0∑
i=1

ki − 1

)
(B.16)
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and the general first order condition is,

∂L
∂ki

= 2kiσ
2
i + 2

(
N0∑
i=1

kiYi

)
Yi − 2µ(XD1 , 0)Yi = 0 (B.17)

Using the first-order condition for ki and k1 and solving for the relationship between them

gives,

ki =
σ21
σ2i
k1 +

(
N0∑
i=1

kiYi − µ(XD1 , 0)

)
Y1 − Yi
σ2i

(B.18)

Thus:

N0∑
i=1

ki =

N0∑
i=1

σ21
σ2i
k1 +

N0∑
i=1

(
N0∑
i=1

kiYi − µ(XD1 , 0)

)
Y1 − Yi
σ2i

= k1σ
2
1

N0∑
i=1

1

σ2i
+

(
N0∑
i=1

kiYi − µ(XD1 , 0)

)(
Y1

N0∑
i=1

1

σ2i
−

N0∑
i=1

Yi
σ2i

)
(B.19)

From here, it is straightforward to recover,

N0∑
i=1

kiYi = k1σ
2
1

N0∑
i=1

Yi
σ2i

+

(
N0∑
i=1

kiYi − µ(XD1 , 0)

)(
Y1

N0∑
i=1

Yi
σ2i
−

N0∑
i=1

Y 2
i

σ2i

)
(B.20)

Subtracting µ(XD1 , 0) from both sides and simplifying delivers,(
N0∑
i=1

kiYi − µ(XD1 , 0)

)
=

k1σ
2
1

∑N0
i=1

Yi
σ2
i
− µ(XD1 , 0)

1− Y1
∑N0

i=1
Y 2
i

σ2
i

+
∑N0

i=1
Y 2
i

σ2
i

(B.21)

Substituting this result into the equation for
∑
ki,

N0∑
i=1

ki = k1σ
2
1

N0∑
i=1

1

σ2i
+

k1σ
2
1

∑N0
i=1

Yi
σ2
i
− µ(XD1 , 0)

1− Y1
∑N0

i=1
Y 2
i

σ2
i

+
∑N0

i=1
Y 2
i

σ2
i

(
Y1

N0∑
i=1

1

σ2i
−

N0∑
i=1

Yi
σ2i

)
(B.22)

Solving the above for k1 produces,

k1 =
1− Y1

∑N0
i=1

Yi
σ2
i

+
∑N0

i=1
Y 2
i

σ2
i

+ µ(XD1 , 0)
(
Y1
∑N0

i=1
1
σ2
i
−
∑N0

i=1
Yi
σ2
i

)
σ21

(∑N0
i=1

1
σ2
i

+
(∑N0

i=1
Y 2
i

σ2
i

)(∑N0
i=1

1
σ2
i

)
−
(∑N0

i=1
Yi
σ2
i

)2) (B.23)

And plugging this into the formula for ki, after simplifying,

ki =
1− Y1

∑N0
i=1

Yi
σ2
i

+
∑N0

i=1
Y 2
i

σ2
i

+ µ(XD1 , 0)
(
Y1
∑N0

i=1
1
σ2
i
−
∑N0

i=1
Yi
σ2
i

)
σ2i

(∑N0
i=1

1
σ2
i

+
(∑N0

i=1
Y 2
i

σ2
i

)(∑N0
i=1

1
σ2
i

)
−
(∑N0

i=1
Yi
σ2
i

)2)

+

∑N0
i=1

1
σ2
i

Y1
∑N0

i=1
1
σ2
i
−
∑N0

i=1
Yi
σ2
i

σ21 (Y1 − Yi)
σ2i

(B.24)

completes the proof of Theorem 2.
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Proof of Lemma 1

Suppose there exist two weight vectors {ki}N0
i=1 and {k′i}

N0
i=1. Suppose they differ only

in their final two elements - k′N0−1 = kN0−1 − q, kN0 = 0, and k′N0
= q. Consider how the

difference in MSE between these two weight vectors changes with q. The difference in MSE

between {ki}N0
i=1 and {k′i}

N0
i=1 is given by

∆MSE = 2qkN0−1σ
2
N0−1 − q

2
(
σ2N0

+ σ2N0−1
)
− q2

(
µ2N0

+ µ2N0−1 − 2µN0µN0−1
)

− 2q (µN0 − µN0−1)

N0−2∑
i=1

kiµi + 2qµ(XD1 , 0) (µN0−1 − µN0)

− 2qkN0−1µN0−1 (µN0−1 − µN0) (B.25)

where I have suppressed notation, setting µi = µ(Xi, Di). Minimizing ∆MSE over q

produces the following first order condition:

0 = 2kN0−1σ
2
N0−1 − 2q

(
σ2N0
− σ2N0−1

)
− q

(
µ2N0

+ µ2N0−1 − 2µN0µN0−1
)

− 2 (µN0 − µN0−1)

N0−2∑
i=1

kiµi + 2µ(XD1 , 0) (µN0 − µN0−1)

− 2kN0−1µN0−1 (µN0 − µN0−1) (B.26)

It is straightforward to verify that the second order condition is negative, and in fact ∆MSE

is strictly concave. The solution to the minimization problem is

q∗ =
kN0−1σ

2
N0−1 − (µN0 − µN0−1)

(∑N0−2
i=1 kiµi + kN0−1µN0−1 − µ(XD1 , 0)

)
σ2N0

+ σ2N0−1 + (µN0 − µN0−1)
2 (B.27)

For convenience, let
∑N0−2

i=1 kiµi + kN0−1µN0−1 − µ(XD1 , 0) = Biaski . It is the bias from

the estimator using the weight vector {ki}N0
i=1. Further, let d = (µN0 − µN0−1).

Since the above minimization problem was unconstrained, it is in theory possible for q∗

to be weakly larger than kN0 , which would imply the MSE-minimizing weight vector would
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contain a zero or negative weight. q∗ ≥ kN0−1 implies

kN0−1σ
2
N0−1 − d ·Biaski ≥ (σ2N0

+ σ2N0−1 + d2)k2

−d

(
N0−1∑
i=1

kiµi − µ(XD1 , 0)

)
≥ σ2N0

kN0−1 + d2kN0−1

Proceeding casewise, suppose that d > 0 and Biaski > 0. This implies that some convex

combination of µi for i ∈ {1, ..., N0−1} is larger in value than the true parameter µ(XD1 , 0),

and that µN0 > µN0−1. Recall that assumption A4 guarantees µ(XD1 , 0) lies between the

largest and smallest values of µi. Suppose the largest value of µi is µj . If j 6= N0, a trivial

MSE decrease can be achieved by shifting some arbitrarily small amount of weight from kj

to kN0 , which would reduce both bias and variance. If j = N0, it must be the case1 that

some µl > µ(XD1 , 0) and that kl > 0. Thus, again, a trivial MSE decrease could be found

by reducing the weight kl and shifting it to some other unit with µi < µ(XD1 , 0). Thus, if

d > 0 and Biaski > 0, it cannot be that MSE is minimized.

Suppose that d > 0 and Biaski ≤ 0. This implies that µN0 > µN0−1 and that {ki} is an

overestimate of the true parameter. In turn, this trivially implies that an MSE reduction

can be achieved by setting q to some arbitrarily small number, as doing so will reduce both

bias and variance.

Suppose that d < 0 and Biaski > 0. This implies that µN0 < µN0−1 and that {ki}

produces an underestimate of the true parameter. As above, this implies the existence of a

trivial MSE reduction from setting q to some arbitrarily small number.

Finally, suppose that d < 0 and Biaski < 0. Mirroring the first case, this implies that

a MSE decrease can be found by shifting weight between units other than N0 and N0 − 1.

Thus, q∗ ≥ kN0−1 either fails to minimize MSE, or violates assumption A4.

I omit the proof that q∗ < 0, as the proof is nearly identical to the above. One can

proceed casewise to verify that q∗ < 0 implies either a failure to minimize MSE or a violation

of assumption A4.

1Otherwise, if µj > µ(XD1 , 0) and the reverse holds for all other µi, it could not be that Biaski > 0, due
to assumption A4.
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Finally, to verify that q∗ 6= 0, note that q∗ = 0 occurs if and only if kN0−1σ
2
N0−1 =

d · Biaski . This is entirely possible - but for {ki} to be an MSE-minimizing weight vector,

this must hold for all possible transfers between all possible units. In other words, since N0

has been assigned zero weight, it must hold that

kiσ
2
i = (µN0 − µi)Biaski ∀ i ∈ {1, ..., N0 − 1} (B.28)

This is only possible if N0 satisfies either µN0 > µi or µN0 < µi for all i ∈ {1, ..., N0− 1}

- otherwise µN0 − µi would switch signs for at least one such i. Suppose that µN0 > µi

for all i ∈ {1, ..., N0 − 1}. For the above condition to hold, it must be that Biaski is also

positive for all units with positive weight, or µN0 > µi for all i ∈ {1, ..., N0 − 1}.

First, if µ(XD1 , 0) lies below µN0 but above all other µi, it is not possible for Biaski > 0

and kN0 = 0 to hold simultaneously. Thus, there must be some µi > µ(XD1 , 0) which also

satisfies µi < µN0 . Call this unit j. By setting k′jµj + k′N0
µN0 = kjµj , bias is reduced.

Further, since k′j +k′N0
< kj , ‘slack’ is introduced to the weight vector that can be allocated

to some other ki. If σ2j and σ2N0
are equivalent or if σ2N0

< σ2j this change immediately

reduces variance while holding bias constant. If σ2j < σ2N0
, setting k′jµj + k′N0

µN0 = kjµj

may increase the variance of the estimator. In that case, simply reduce k′N0
and deploy the

additional slack weight to reduce bias. Since there is some positive k′N0
that reduces the

variance of the estimator, it is always possible to find a set of weight shifts that reduces

both bias and variance.

In the alternative case, where µN0 < µi for all i ∈ {1, ..., N0 − 1}, the proof is again

nearly identical, and thus omitted. This completes the proof of Lemma 1.
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APPENDIX C. ADDITIONAL MATERIAL FOR CHAPTER 3

Bandwidth Choice

Following Abrevaya et al. (2015), the bandwidth for my estimates was selected as a

multiple of the sample standard deviation in the conditioning covariate. I consider four

different multipliers - 0.25, 0.5, 1, and 2. While the range of these multipliers is much

smaller than that considered by Abrevaya et al. (2015) in their empirical illustration, it will

quickly become clear that even the medium bandwidth of 1 causes the CATE estimator to

over-smooth to the extent that it becomes no more informative than an ATE estimator.

Recall that my main specification sets the bandwidth multiplier to 0.5. Setting the

bandwidth multiplier to 0.25 causes the estimated CATE function to be significantly less

smooth (Figures C.1 and C.2). Qualitatively, however, the story is largely unchanged. The

worst-performing female students see a negative effect of assignment to a female teacher,

while male students see significantly less heterogeneity and no significant negative effects.

The effect of reducing the bandwidth multiplier is nearly identical for reading outcomes.

The qualitative story of the estimated CATE function is largely unchanged - significant

effects are observed in roughly the same places, and the general shape of the function is

similar. Again, there appears to be significantly less heterogeneity for male students than

for female students.

Moving in the other direction and increasing the bandwidth multiplier pushes the es-

timated CATE function strongly towards monotonicity, and towards a flat slope (Figure

C.3). With a bandwidth multiplier of 1, almost every estimated CATE function is strictly

monotonic, and the vast majority of the variation occurs for estimates conditional on the
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Figure C.1 CATE Estimates (Math) with bandwidth = 0.25

Figure C.2 CATE Estimates (Reading) with bandwidth = 0.25

highest test scores, where very little data is available. Given the heterogeneity present

for smaller bandwidths, it seems reasonable to say that at this bandwidth the estimator

is clearly over-smoothing. However, note that even with this bandwidth, female students

still see notably more heterogeneity than male students in reading, although the difference

largely vanishes for math. Increasing the bandwidth multiplier even further to 2 (Figure

C.4), forces near-constancy on almost all estimated CATE functions:
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Figure C.3 CATE Estimates with bandwidth = 1

Kernel Choice

As tends to be the case with kernel-based local averaging estimators, the choice of kernel

does not have a huge impact on the resulting estimates - bandwidth choice is dramatically

more important. I consider two different kernels - the rectangular (uniform) kernel Kr and

the Epanechnikov kernel Ke:

Kr(u) =


1
2 if |u| ≤ 1

0 otherwise

Ke(u) =


3
4

(
1− u2

)
if |u| ≤ 1

0 otherwise
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Figure C.4 CATE Estimates with bandwidth = 2

The primary difference between these kernels and the Gaussian kernel is that weights de-

crease towards zero more rapidly, particularly with the rectangular kernel. This results in

less smooth estimates of the CATE function, but the qualitative story is largely unchanged.

The effect of bandwidth choice is essentially identical for all kernels, so I report only the

results for the intermediate bandwidth multipliers of 0.5 and 1 for these alternative kernels.

The effects of other relatively efficient kernels, such as quartic or triweight kernels, are very

similar to the effect of the Epanechnikov kernel.

Selection of a rectangular kernel (Figure C.5) generates the least smooth estimates for

any given bandwidth. The Epanechnikov kernel (Figure C.6) likewise does not significantly

change the qualitative results.
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Propensity Score Estimation

Details of the main specification

Recall the main specification:

ln
P (FTEACHi = 1)

1− P (FTEACHi = 1)
= β0 + β1SC

′
i + β2TC

′
i + β3R

′
i + β4TFAi + β5CSi + ui

SC
′
i is a vector of student characteristics. It includes indicators for a student being black

or Hispanic, the relevant pre-treatment test score in math or reading as measured on the

normal curve equivalent scale, and an indicator for whether the student’s class contained a

disruptive student.

TC
′
i contains the teacher’s experience measured in years as well as indicators for whether

the teacher was black or Hispanic. In some of the following alternative specifications, it also

includes an indicator for possession of a regular teacher certification.

R
′

is a vector of region indicators. There were 6 regions in the experiment, containing 7

school districts because the Mississippi Delta contributed two school districts. TFAi is an

indicator for whether the teacher was a TFA teacher or not. CSi is the class size, measured

as the number of students in the class at the end of the year1.

Alternative specifications

First, I consider the addition of the indicator for a traditional teacher certification

(Figure C.7). The main specification excludes this variable because previous research (e.g.

Staiger and Rockoff (2010)) suggests that teacher certifications are not good predictors of

teacher quality, and thus balancing of samples on teacher certification would be harmful

unless such balance could be achieved without cost to balance on another covariate (which

is not the case). The results of including teacher certification in the propensity score model

largely bear this claim out - the qualitative story is almost identical, and the only real

1This is the ‘true’ class size in that it counts students that are not part of the research sample.
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change is an increase in the size of the confidence intervals. This is consistent with the

expected effects of including an irrelevant covariate in the propensity score model.

I omit reports for other bandwidth multipliers because the results of that exercise are

identical - larger confidence bands, with no significant change to the underlying function.

I also consider a much simpler propensity score specification, dropping the teacher and

student demographic variables to leave only pre-test score, class size, teacher experience, and

indicators for disrupted class, assignment to a TFA teacher, and region (Figure C.8). While

this specification clearly excludes potentially relevant covariates, it also results in a complete

elimination of numerically 0 or 1 propensity scores, and far fewer extreme propensity scores.

If the effect of student or teacher demographics is limited, this specification may make a

profitable bias/variance trade-off. In particular, if sorting of teachers into schools was in fact

random, or at least uncorrelated with teacher or school characteristics, this specification

would be preferable.

While the results for male students are very marginally consistent with the results from

my main specification, particularly in math, it is clear that (as prior research would suggest)

the demographic variables excluded in this specification are relevant. If they were irrelevant

or had a sufficiently minor impact on outcomes, one would expect to see smaller confidence

intervals but a largely similar underlying function from this specification.

Finally, I consider the addition of a school fixed effect to the propensity score model

(Figures C.9 and C.10). Since a significant minority of schools contain only female teachers,

this causes the trimming behavior to play a larger part in the results - many more students

receive propensity scores close to 1 or 0 and are thus subject to the trimming behavior.

With my default trimming behavior (setting extreme propensity scores to 0.95 or 0.05), the

results are again reasonably similar in terms of qualitative story.

However, for female students in math and male students in reading, these results are

no longer robust to changes in the trimming behavior. Dropping students with extreme

propensity scores generates the following results
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These results suggest that non-TFA teachers are not sorting differentially into schools

within a region, which was the only potential source of endogeneity in my main specifi-

cation. A conservative reading of these robustness checks would suggest that the positive

treatment effect I find on male students is potentially uncertain, but conclusions related

to the heterogeneity in the effect of teacher gender on students of differing abilities are

unaffected.
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Figure C.5 CATE Estimates with Rectangular Kernel Kr
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Figure C.6 CATE Estimates with Epanechnikov kernel Ke
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Figure C.7 CATE Estimates with Teacher Certification Indicator
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Figure C.8 CATE Estimates without demographics
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Figure C.9 CATE Estimates (Math) with School Fixed Effects
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Figure C.10 CATE Estimates (Reading) with School Fixed Effects
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